This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A002688 Denominators of coefficients for repeated integration. (Formerly M4158 N1728) 1
 6, 24, 45, 480, 10080, 24192, 907200, 1036800, 239500800, 106444800, 9906624000, 475517952000, 15692092416000, 4828336128000, 8002967132160000, 4268249137152000, 51607012294656000, 1202139815804928000 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS H. E. Salzer, Table of coefficients for repeated integration with differences, Phil. Mag., 38 (1947), 331-336. H. E. Salzer, Table of coefficients for repeated integration with differences,  Phil. Mag., 38 (1947), 331-336. [Annotated scanned copy] FORMULA a(n) = denominator(1/n!*(Sum_{k=1..n}((stirling1(n,k))/((k+1)*(k+2))))). - Vladimir Kruchinin, Apr 06 2016 MAPLE seq(denom(int(int(mul(p-i, i=0..(n-1)), p=0..p), p=0..1)/n!), n=1..30); # Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 01 2010 MATHEMATICA Table[Denominator@ (Sum[StirlingS1[n, k]/((k + 1) (k + 2)), {k, n}]/n!), {n, 20}] (* Michael De Vlieger, Apr 06 2016 *) PROG (Maxima) a(n):=denom(1/n!*(sum((stirling1(n, k))/((k+1)*(k+2)), k, 1, n))); /* Vladimir Kruchinin, Apr 06 2016 */ CROSSREFS Cf. A002687. Sequence in context: A062768 A161333 A253770 * A083212 A120572 A000056 Adjacent sequences:  A002685 A002686 A002687 * A002689 A002690 A002691 KEYWORD nonn,frac AUTHOR EXTENSIONS More terms from Herman Jamke (hermanjamke(AT)fastmail.fm), Aug 01 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified March 21 20:25 EDT 2019. Contains 321382 sequences. (Running on oeis4.)