The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025014 Central "nonomial" coefficient: largest coefficient of (1+x+...+x^8)^n. 42
 1, 1, 9, 61, 489, 3951, 32661, 273127, 2306025, 19610233, 167729959, 1441383219, 12434998005, 107632809909, 934263293679, 8129320828911, 70886845397481, 619288973447049, 5419332253680705, 47494787636620701, 416800775902696839 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Generally, largest coefficient of (1+x+...+x^k)^n is asymptotic to (k+1)^n * sqrt(6/(k*(k+2)*Pi*n)). - Vaclav Kotesovec, Aug 09 2013 REFERENCES Rudolph-Lilith, Michelle, and Lyle E. Muller. "On a link between Dirichlet kernels and central multinomial coefficients." Discrete Mathematics 338.9 (2015): 1567-1572. LINKS T. D. Noe, Table of n, a(n) for n=0..200 FORMULA The Almkvist-Zeilberger algorithm in EKHAD establishes the following recurrence: -6561*(4*n+17)*(4*n+13)*(5*n+24)*(5*n+19)*(5*n+14)*(5*n+23)*(n+4)*(n+3)*(n+2)*(n+1)*a(n)+1458*(5*n+24)*(5*n+19)*(4*n+17)*(5*n+9)*(4*n+9)*(5*n+18)*(2*n+9)*(n+4)*( n+3)*(n+2)*a(n+1)+162*(5*n+24)*(5*n+14)*(4*n+13)*(5*n+23)*(n+4)*(n+3)*(1020*n^4+12291*n^3+53378*n^2+98617*n+65610)*a(n+2)-18*(4*n+17)*(4*n+9)*(5*n+19)*(2*n+9)*(5 *n+9)*(5*n+18)*(n+4)*(385*n^3+4158*n^2+14551*n+16610)*a(n+3)-(5*n+23)*(4*n+13)*(4*n+9)*(5*n+24)*(5*n+14)*(5*n+9)*(2101*n^4+33616*n^3+201391*n^2+535416*n+532980)* a(n+4)+8*(4*n+19)*(5*n+19)*(5*n+14)*(5*n+9)*(2*n+9)*(4*n+17)*(4*n+13)*(4*n+9)*(5*n+18)*(n+5)*a(n+5) = 0. - Doron Zeilberger, Apr 02 2013. a(n) ~ 9^n * sqrt(3/(40*Pi*n)). - Vaclav Kotesovec, Aug 09 2013 MATHEMATICA Flatten[{1, Table[Coefficient[Expand[Sum[x^j, {j, 0, 8}]^n], x^(4*n)], {n, 1, 20}]}] (* Vaclav Kotesovec, Aug 09 2013 *) CROSSREFS Cf. A001405, A002426, A005190, A005191, A018901, A025012, A025013 Sequence in context: A200674 A162769 A126504 * A246567 A322086 A075139 Adjacent sequences:  A025011 A025012 A025013 * A025015 A025016 A025017 KEYWORD easy,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified April 16 17:01 EDT 2021. Contains 343050 sequences. (Running on oeis4.)