This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025012 Central heptanomial coefficients: largest coefficient of (1+x+...+x^6)^n. 50
 1, 1, 7, 37, 231, 1451, 9331, 60691, 398567, 2636263, 17538157, 117224317, 786588243, 5295520699, 35751527189, 241958082737, 1641010879207, 11150608945863, 75894449584849, 517331384963959, 3531097638576781, 24131083600660801, 165090433568378523 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Apparently: number of n-step 1-D walks ending at the origin with steps of size 0, 1, 2 or 3. - David Scambler, Apr 09 2012 Generally, largest coefficient of (1+x+...+x^k)^n is asymptotic to (k+1)^n * sqrt(6/(k*(k+2)*Pi*n)). - Vaclav Kotesovec, Aug 09 2013 REFERENCES Rudolph-Lilith, Michelle, and Lyle E. Muller. "On a link between Dirichlet kernels and central multinomial coefficients." Discrete Mathematics 338.9 (2015): 1567-1572. LINKS T. D. Noe and Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 201 terms from T. D. Noe) M. Rudolph-Lilith, L. E. Muller, On an explicit representation of central (2k+1)-nomial coefficients, arXiv preprint arXiv:1403.5942, 2014 Doron Zeilberger, EKHAD FORMULA Conjecture: 3*n*(3*n-1)*(3*n-2)*a(n) +(41*n^3-723*n^2+1132*n-456)*a(n-1) +7*(-383*n^3+2607*n^2-5992*n+4608)*a(n-2) +49*(-83*n^3+1317*n^2-6706*n +10512)*a(n-3) +343*(199*n^3-2487*n^2+10394*n-14496)*a(n-4) +2401*(n-4)*(43*n^2-437*n+1116)*a(n-5) -16807*(n-4)*(n-5)*(5*n-24)*a(n-6) -117649*(n-5)*(n-6)*(n-4)*a(n-7) = 0. - R. J. Mathar, Feb 21 2010 I checked that Mathar's conjectured formula fits the 200 terms of the b-file. Note that the coefficients are powers of 7: 49=7^2, 343=7^3, 2401=7^4, 16807=7^5, 117649=7^6. - T. D. Noe, Nov 15 2010 Comment from Doron Zeilberger, Apr 12 2011: The conjectured recurrence can be rigorously proved (and also discovered at the same time, no need for a guessing program) automatically via the Almkvist-Zeilberger algorithm (procedure AZd in the EKHAD link). In fact the program finds a 4th order recurrence, not a 7th order one: 343/3*(4*n+15)*(n+3)*(n+2)*(n+1)/(3*n+7)/(4*n+7)/(11+3*n)/(n+4)*a(n)+98/3*(4*n+15)*(n+3)*(n+2)*(2*n+7) /(11+3*n)/(3*n+10)/(4*n+11)/(n+4)*a(n+1) -14/3*(n+3)*(92*n^3+713*n^2+1747*n+1372)/(3*n+7)/(4*n+7)/(11+3*n)/(n+4)*a(n+2) -2/3*(4*n+15)*(2*n+7)*(37*n^2 +222*n+332)/(11+3*n)/(3*n+10)/(4*n+1)/(n+4)*a(n+3) +a(n+4) = 0. G.f.: sqrt((-4*x*(7*x+6)*(1+2*x)*g^3-4*x*(77*x^2+117*x+43)*g^2-4*x*(119*x^2+188*x+72)*g-307*x^2-217*x^3+27-67*x)/((7*x-1)*(49*x^2-14*x-27)))/(1+x)  where (2*g+1)*(g^3+5*g^2+6*g+1)*x^2+g*(g^3+3+11*g+7*g^2)*x-g = 0. - Mark van Hoeij, May 06 2013 a(n) ~ 7^n / sqrt(8*Pi*n). - Vaclav Kotesovec, Aug 09 2013 MAPLE g := RootOf((2*g+1)*(g^3+5*g^2+6*g+1)*x^2+g*(g^3+3+11*g+7*g^2)*x-g, g); ogf := sqrt((-4*x*(7*x+6)*(1+2*x)*g^3-4*x*(77*x^2+117*x+43)*g^2-4*x*(119*x^2+188*x+72)*g-307*x^2-217*x^3+27-67*x)/((7*x-1)*(49*x^2-14*x-27)))/(1+x); series(ogf, x=0, 30); # Mark van Hoeij, May 06 2013 MATHEMATICA With[{poly=Plus@@(x^Range[0, 6])}, Table[Max[CoefficientList[Expand[poly^i], x]] {i, 0, 20}]] (* Harvey P. Dale, Mar 09 2011 *) CROSSREFS Cf. A001405, A002426, A005190, A005191, A018901, A025013, A025014. Sequence in context: A077239 A046235 A144496 * A039938 A285846 A102760 Adjacent sequences:  A025009 A025010 A025011 * A025013 A025014 A025015 KEYWORD easy,nonn AUTHOR STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.