This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A025017 a(n) = least 2k such that p is the least prime in a Goldbach partition of 2k, where p = prime(n). 7
 4, 6, 12, 30, 124, 122, 418, 98, 220, 346, 308, 1274, 1144, 962, 556, 2512, 3526, 1382, 1856, 4618, 992, 3818, 7432, 12778, 5978, 26098, 2642, 23266, 10268, 19696, 6008, 34192, 22606, 5372, 37768, 13562, 9596, 22832, 59914, 7426, 88786, 50312, 97768 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,1 COMMENTS Minimal integer m such that m=p(n)+q=sum of 2 primes, where p(n)<=q is the n-th prime and there is no prime rn, k(m)>k(n) is A025018, and the associated sequence of primes is A025019. - David James Sycamore, Feb 05 2018 LINKS N. J. A. Sloane, Table of n, a(n) for n = 1..977 (from the web page of Tomás Oliveira e Silva) Tomás Oliveira e Silva, Goldbach conjecture verification EXAMPLE a(4)=30=7+23 because p(4)=7, q=23 is prime and there is no prime r 0 n = n + 1; end; if n > 0 d(2, 1:n) end; end; end; k = 1; i = i + 2; end; - Lei Zhou, Jan 26 2005 (PARI) Gold(n)=forprime(p=2, n, if(isprime(n-p), return(p))) a(n, p=prime(n))=my(k=2); while(Gold(k+=2)!=p, ); k \\ Charles R Greathouse IV, Sep 28 2015 CROSSREFS For records see A133427, A133428. Cf. A025018, A025019. Sequence in context: A178674 A025018 A102043 * A133427 A027070 A087785 Adjacent sequences:  A025014 A025015 A025016 * A025018 A025019 A025020 KEYWORD nonn AUTHOR EXTENSIONS Edited by N. J. A. Sloane, May 05 2007; b-file added Nov 27 2007 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 15 10:15 EDT 2019. Contains 328026 sequences. (Running on oeis4.)