login
A162769
a(n) = ((1+sqrt(5))*(4+sqrt(5))^n + (1-sqrt(5))*(4-sqrt(5))^n)/2.
1
1, 9, 61, 389, 2441, 15249, 95141, 593389, 3700561, 23077209, 143911501, 897442709, 5596515161, 34900251489, 217640345141, 1357219994749, 8463716161441, 52780309349289, 329141597018461, 2052549373305509
OFFSET
0,2
COMMENTS
Binomial transform of A082762. Fourth binomial transform of A162962. Inverse binomial transform of A093145 without initial 0.
FORMULA
a(n) = 8*a(n-1) - 11*a(n-2) for n > 1; a(0) = 1, a(1) = 9.
G.f.: (1+x)/(1-8*x+11*x^2).
a(n) = A091870(n)+A091870(n+1). - R. J. Mathar, Feb 04 2021
MATHEMATICA
f[n_] := Block[{s = Sqrt@ 5}, Simplify[((1 + s)(4 + s)^n + (1 - s)(4 - s)^n)/2]]; Array[f, 21, 0] (* Or *)
a[n_] := 8 a[n - 1] - 11 a[n - 2]; a[0] = 1; a[1] = 9; Array[a, 22, 0] (* Or *)
CoefficientList[Series[(1 + x)/(1 - 8 x + 11 x^2), {x, 0, 21}], x] (* Robert G. Wilson v *)
PROG
(Magma) Z<x>:=PolynomialRing(Integers()); N<r>:=NumberField(x^2-5); S:=[ ((1+r)*(4+r)^n+(1-r)*(4-r)^n)/2: n in [0..19] ]; [ Integers()!S[j]: j in [1..#S] ]; // Klaus Brockhaus, Jul 19 2009
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Al Hakanson (hawkuu(AT)gmail.com), Jul 13 2009
EXTENSIONS
Edited and extended beyond a(5) by Klaus Brockhaus, Jul 19 2009
STATUS
approved