login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122848 Exponential Riordan array (1,x(1+x/2)). 13
1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 0, 15, 10, 1, 0, 0, 0, 15, 45, 15, 1, 0, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Entries are Bessel polynomial coefficients. Row sums are A000085. Diagonal sums are A122849. Inverse is A122850. Product of A007318 and A122848 gives A100862.

T(n,k) is the number of self inverse permutations of {1,2,...,n} having exactly k cycles. - Geoffrey Critzer, May 08 2012

Bessel numbers of the second kind. For relations to the Hermite polynomials and the Catalan (A033184 and A009766) and Fibonacci (A011973, A098925, and A092865) matrices, see Yang and Qiao. - Tom Copeland, Dec 18 2013.

Also the inverse Bell transform of the double factorial of odd numbers Product_{k= 0..n-1} (2*k+1) (A001147). For the definition of the Bell transform see A264428 and for cross-references A265604. - Peter Luschny, Dec 31 2015

LINKS

Table of n, a(n) for n=0..79.

P. Bala, Generalized Dobinski formulas

T. Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras

H. Han, S. Seo, Combinatorial proofs of inverse relations and log-concavity for Bessel numbers, Eur. J. Combinat. 29 (7) (2008) 1544-1554. [From R. J. Mathar, Mar 20 2009]

S. Yang and Z. Qiao, The Bessel Numbers and Bessel Matrices, Journal of Mathematical Research & Exposition, July, 2011, Vol. 31, No. 4, pp. 627-636. [From Tom Copeland, Dec 18 2013]

FORMULA

Number triangle T(n,k)=k!*C(n,k)/((2k-n)!*2^(n-k))

T(n,k) = A001498(k,n-k). - Michael Somos, Oct 03 2006

E.g.f.: exp(y(x+x^2/2)). - Geoffrey Critzer, May 08 2012

Triangle equals the matrix product A008275*A039755. Equivalently, the n-th row polynomial R(n,x) is given by the Type B Dobinski formula R(n,x) = exp(-x/2)*sum {k = 0..inf} P(n,2*k+1)*(x/2)^k/k!, where P(n,x) = x*(x-1)*...*(x-n+1) denotes the falling factorial polynomial. Cf. A113278. - Peter Bala, Jun 23 2014

EXAMPLE

Triangle begins

1,

0, 1,

0, 1, 1,

0, 0, 3, 1,

0, 0, 3, 6, 1,

0, 0, 0, 15, 10, 1,

0, 0, 0, 15, 45, 15, 1,

0, 0, 0, 0, 105, 105, 21, 1

MAPLE

# The function BellMatrix is defined in A264428.

BellMatrix(n -> `if`(n<2, 1, 0), 9); # Peter Luschny, Jan 27 2016

MATHEMATICA

t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten

PROG

(PARI) {T(n, k)=if(2*k<n|k>n, 0, n!/(2*k-n)!/(n-k)!*2^(k-n))} /* Michael Somos, Oct 03 2006 */

(Sage)

# The function inverse_bell_transform is defined in A265605.

multifact_2_1 = lambda n: prod(2*k + 1 for k in (0..n-1))

inverse_bell_matrix(multifact_2_1, 9) # Peter Luschny, Dec 31 2015

CROSSREFS

Cf. A001497, A049403, A111924. A008275, A039755, A113278.

Sequence in context: A170846 A085604 A144357 * A272481 A054548 A059202

Adjacent sequences:  A122845 A122846 A122847 * A122849 A122850 A122851

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Sep 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 27 08:35 EDT 2016. Contains 273367 sequences.