login
This site is supported by donations to The OEIS Foundation.

 

Logo

Many excellent designs for a new banner were submitted. We will use the best of them in rotation.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122848 Exponential Riordan array (1,x(1+x/2)). 7
1, 0, 1, 0, 1, 1, 0, 0, 3, 1, 0, 0, 3, 6, 1, 0, 0, 0, 15, 10, 1, 0, 0, 0, 15, 45, 15, 1, 0, 0, 0, 0, 105, 105, 21, 1, 0, 0, 0, 0, 105, 420, 210, 28, 1, 0, 0, 0, 0, 0, 945, 1260, 378, 36, 1, 0, 0, 0, 0, 0, 945, 4725, 3150, 630, 45, 1, 0, 0, 0, 0, 0, 0, 10395, 17325, 6930, 990, 55, 1, 0, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

Entries are Bessel polynomial coefficients. Row sums are A000085. Diagonal sums are A122849. Inverse is A122850. Product of A007318 and A122848 gives A100862.

T(n,k) is the number of self inverse permutations of {1,2,...,n} having exactly k cycles. - Geoffrey Critzer, May 08 2012

Bessel numbers of the second kind. For relations to the Hermite polynomials and the Catalan (A033184 and A009766) and Fibonacci (A011973, A098925, and A092865) matrices, see Yang and Qiao. - Tom Copeland, Dec 18 2013.

REFERENCES

S. Yang and Z. Qiao, The Bessel Numbers and Bessel Matrices. Journal of Mathematical Research & Exposition, July, 2011, Vol. 31, No. 4, pp. 627-636. [From Tom Copeland, Dec 18 2013]

LINKS

Table of n, a(n) for n=0..79.

T. Copeland, Infinitesimal Generators, the Pascal Pyramid, and the Witt and Virasoro Algebras

H. Han, S. Seo, Combinatorial proofs of inverse relations and log-concavity for Bessel numbers, Eur. J. Combinat. 29 (7) (2008) 1544-1554. [From R. J. Mathar, Mar 20 2009]

FORMULA

Number triangle T(n,k)=k!*C(n,k)/((2k-n)!*2^(n-k))

T(n,k) = A001498(k,n-k). - Michael Somos, Oct 03 2006

E.g.f.: exp(y(x+x^2/2)). - Geoffrey Critzer, May 08 2012

EXAMPLE

Triangle begins

1,

0, 1,

0, 1, 1,

0, 0, 3, 1,

0, 0, 3, 6, 1,

0, 0, 0, 15, 10, 1,

0, 0, 0, 15, 45, 15, 1,

0, 0, 0, 0, 105, 105, 21, 1

MATHEMATICA

t[n_, k_] := k!*Binomial[n, k]/((2 k - n)!*2^(n - k)); Table[ t[n, k], {n, 0, 11}, {k, 0, n}] // Flatten

PROG

(PARI) {T(n, k)=if(2*k<n|k>n, 0, n!/(2*k-n)!/(n-k)!*2^(k-n))} /* Michael Somos, Oct 03 2006 */

CROSSREFS

Cf. A001497, A049403, A111924.

Sequence in context: A170846 A085604 A144357 * A054548 A059202 A144452

Adjacent sequences:  A122845 A122846 A122847 * A122849 A122850 A122851

KEYWORD

easy,nonn,tabl

AUTHOR

Paul Barry, Sep 14 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified April 19 17:29 EDT 2014. Contains 240767 sequences.