login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A218002
E.g.f.: exp( Sum_{n>=1} x^prime(n) / prime(n) ).
9
1, 0, 1, 2, 3, 44, 55, 1434, 3913, 39752, 392481, 5109290, 34683451, 914698212, 5777487703, 91494090674, 1504751645265, 31764834185744, 379862450767873, 12634073744624082, 132945783064464691, 2753044719709341980, 64135578414076991031, 1822831113987975441482
OFFSET
0,4
COMMENTS
Conjecture: a(n) = number of degree-n permutations of prime order.
The conjecture is false. Cf. A214003. This sequence gives the number of n-permutations whose cycle lengths are restricted to the prime numbers. - Geoffrey Critzer, Nov 08 2015
LINKS
Ljuben Mutafchiev, A Note on the Number of Permutations whose Cycle Lengths Are Prime Numbers, arXiv:2108.05291 [math.CO], 2021.
EXAMPLE
E.g.f.: A(x) = 1 + x^2/2! + 2*x^3/3! + 3*x^4/4! + 44*x^5/5! + 55*x^6/6! + 1434*x^7/7! + ...
where
log(A(x)) = x^2/2 + x^3/3 + x^5/5 + x^7/7 + x^11/11 + x^13/13 + x^17/17 + x^19/19 + x^23/23 + x^29/29 + ... + x^prime(n)/prime(n) + ...
a(5) = 44 because there are 5!/5 = 24 permutations that are 5-cycles and there are 5!/(2*3) = 20 permutations that are the disjoint product of a 2-cycle and a 3-cycle. - Geoffrey Critzer, Nov 08 2015
MAPLE
a:= proc(n) option remember; `if`(n=0, 1, add(`if`(isprime(j),
a(n-j)*(j-1)!*binomial(n-1, j-1), 0), j=1..n))
end:
seq(a(n), n=0..25); # Alois P. Heinz, May 12 2016
MATHEMATICA
f[list_] :=Total[list]!/Apply[Times, list]/Apply[Times, Map[Length, Split[list]]!]; Table[Total[Map[f, Select[Partitions[n], Apply[And, PrimeQ[#]] &]]], {n, 0, 23}] (* Geoffrey Critzer, Nov 08 2015 *)
PROG
(PARI) {a(n)=n!*polcoeff(exp(sum(k=1, n, x^prime(k)/prime(k))+x*O(x^n)), n)}
for(n=0, 31, print1(a(n), ", "))
CROSSREFS
KEYWORD
nonn
AUTHOR
Paul D. Hanna, Oct 17 2012
STATUS
approved