The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Please make a donation to keep the OEIS running. We are now in our 56th year. In the past year we added 10000 new sequences and reached almost 9000 citations (which often say "discovered thanks to the OEIS"). Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A064990 If A_k denotes the first 3^k terms, then A_0 = 0, A_{k+1} = A_k A_k B_k, where B_k is obtained from A_k by interchanging 0's and 1's. 10
 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,1 COMMENTS Called the Mephisto Waltz sequence (or the Mephisto Waltz infinite word). May also be obtained by starting with 0 and iterating the morphism 0 -> 001, 1 -> 110. The sequence is fourth-power free. The sequence gives A_oo. For the concatenation A_0, A_1, A_2, ... see A134391. REFERENCES J.-P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 25. Konrad Jacobs, Invitation to Mathematics, Princeton, 1992; pp. 105-106 and 215. LINKS Joerg Arndt, Matters Computational (The Fxtbook), section 38.1.2, pp. 729-730 J. Endrullis, D. Hendriks and J. W. Klop, Degrees of streams. Eric Weisstein's World of Mathematics, Mephisto Waltz Sequence FORMULA a(3k-2)=a(k), a(3k-1)=a(k), a(3k)=1-a(k) for k>=1, a(0)=0. EXAMPLE Here are A_0 through A_5: 0 001 001001110 001001110001001110110110001 001001110001001110110110001001001110001001110110110001110110001110110001001001110 001001110001001110110110001001001110001001110110110001110110001110110001001001110\ 00100111000100111011011000100100111000100111011011000111011000111011000100100111\ 0110110001110110001001001110110110001110110001001001110001001110001001110110110001 MAPLE with(ListTools); f2:=proc(S) map(x->x+1 mod 2, S); end; f:=proc(S) global f2; [op(S), op(S), op(f2(S))]; end; S:=[0]; for n from 1 to 6 do S:=f(S): od: S; # N. J. A. Sloane, Apr 30 2017 MATHEMATICA t = Nest[Flatten[# /. {0->{0, 0, 1}, 1->{1, 1, 0}}] &, {0}, 5] (*A064990*) f[n_] := t[[n]] Flatten[Position[t, 0]] (*A189658*) Flatten[Position[t, 1]] (*A189659*) s[n_] := Sum[f[i], {i, 1, n}]; s[0] = 0; Table[s[n], {n, 1, 120}] (*A189660*) (* by Clark Kimberling, Apr 25 2011 *) Nest[ Flatten[# /. # -> {#, #, Abs[# - 1]}] &, {0}, 5]  (* Robert G. Wilson v, Sep 27 2011 *) PROG (PARI) a(n) = vecsum(digits(n, 3)>>1)%2; \\ Kevin Ryde, Jun 02 2020 CROSSREFS Cf. Thue-Morse sequence A010060, A001285. Number of 0's in A_k gives A007051, number of 1's is A003462. See also A064991. Cf. A134391, A189628. A285196 is a similar sequence. Sequence in context: A106138 A273129 A288936 * A284388 A289174 A059125 Adjacent sequences:  A064987 A064988 A064989 * A064991 A064992 A064993 KEYWORD nonn,easy,nice AUTHOR Michael Gilleland (megilleland(AT)yahoo.com), Oct 31 2001 EXTENSIONS More terms from Naohiro Nomoto, Nov 29 2001 Corrected by N. J. A. Sloane, Jun 14 2010, at the suggestion of Chris Erickson STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 3 02:55 EST 2020. Contains 338899 sequences. (Running on oeis4.)