login
A285196
If A_k denotes the first 2*3^k terms, then A_0 = 01, A_{k+1} = A_k A_k B_k, where B_k is the reversal of A_k.
2
0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0
OFFSET
0
COMMENTS
The old (incorrect) definition was "If A_k denotes the first 2*3^k terms, then A_0 = 01, A_{k+1} = A_k A_k B_k, where B_k is obtained from A_k by interchanging 0's and 1's."
MAPLE
with(ListTools);
f2:=proc(S) map(x->x+1 mod 2, S); end;
f:=proc(S) global f2;
[op(S), op(S), op(f2(S))]; end;
S:=[0, 1];
for n from 1 to 6 do S:=f(S): od:
S;
CROSSREFS
Cf. A118006.
Sequence in context: A284878 A118006 A372258 * A189673 A189014 A189017
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Apr 30 2017
EXTENSIONS
Definition corrected by N. J. A. Sloane, Aug 29 2023 at the suggestion of L. Edson Jeffery
STATUS
approved