%I
%S 0,0,1,0,0,1,1,1,0,0,0,1,0,0,1,1,1,0,1,1,0,1,1,0,0,0,1,0,0,1,0,0,1,1,
%T 1,0,0,0,1,0,0,1,1,1,0,1,1,0,1,1,0,0,0,1,1,1,0,1,1,0,0,0,1,1,1,0,1,1,
%U 0,0,0,1,0,0,1,0,0,1,1,1,0,0,0,1,0,0,1,1,1,0,0,0,1,0,0,1,1,1,0
%N If A_k denotes the first 3^k terms, then A_0 = 0, A_{k+1} = A_k A_k B_k, where B_k is obtained from A_k by interchanging 0's and 1's.
%C Called the Mephisto Waltz sequence (or the Mephisto Waltz infinite word).
%C May also be obtained by starting with 0 and iterating the morphism 0 > 001, 1 > 110.
%C The sequence is fourthpower free.
%C The sequence gives A_oo. For the concatenation A_0, A_1, A_2, ... see A134391.
%D J.P. Allouche and J. Shallit, Automatic Sequences, Cambridge Univ. Press, 2003, p. 25.
%D Konrad Jacobs, Invitation to Mathematics, Princeton, 1992; pp. 105106 and 215.
%H Joerg Arndt, <a href="http://www.jjj.de/fxt/#fxtbook">Matters Computational (The Fxtbook)</a>, section 38.1.2, pp. 729730
%H J. Endrullis, D. Hendriks and J. W. Klop, <a href="http://www.cs.vu.nl/~diem/publication/pdf/degrees.pdf">Degrees of streams</a>.
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/MephistoWaltzSequence.html">Mephisto Waltz Sequence</a>
%F a(3k2)=a(k), a(3k1)=a(k), a(3k)=1a(k) for k>=1, a(0)=0.
%e Here are A_0 through A_5:
%e 0
%e 001
%e 001001110
%e 001001110001001110110110001
%e 001001110001001110110110001001001110001001110110110001110110001110110001001001110
%e 001001110001001110110110001001001110001001110110110001110110001110110001001001110\
%e 00100111000100111011011000100100111000100111011011000111011000111011000100100111\
%e 0110110001110110001001001110110110001110110001001001110001001110001001110110110001
%p with(ListTools);
%p f2:=proc(S) map(x>x+1 mod 2, S); end;
%p f:=proc(S) global f2;
%p [op(S), op(S), op(f2(S))]; end;
%p S:=[0];
%p for n from 1 to 6 do S:=f(S): od:
%p S; # _N. J. A. Sloane_, Apr 30 2017
%t t = Nest[Flatten[# /. {0>{0,0,1}, 1>{1,1,0}}] &, {0}, 5] (*A064990*)
%t f[n_] := t[[n]]
%t Flatten[Position[t, 0]] (*A189658*)
%t Flatten[Position[t, 1]] (*A189659*)
%t s[n_] := Sum[f[i], {i, 1, n}]; s[0] = 0;
%t Table[s[n], {n, 1, 120}] (*A189660*)
%t (* by Clark Kimberling, Apr 25 2011 *)
%t Nest[ Flatten[# /. # > {#, #, Abs[#  1]}] &, {0}, 5] (* _Robert G. Wilson v_, Sep 27 2011 *)
%Y Cf. ThueMorse sequence A010060, A001285. Number of 0's in A_k gives A007051, number of 1's is A003462. See also A064991.
%Y Cf. A134391, A189628.
%Y A285196 is a similar sequence.
%K nonn,easy,nice
%O 0,1
%A Michael Gilleland (megilleland(AT)yahoo.com), Oct 31 2001
%E More terms from _Naohiro Nomoto_, Nov 29 2001
%E Corrected by _N. J. A. Sloane_, Jun 14 2010, at the suggestion of Chris Erickson
