This site is supported by donations to The OEIS Foundation.

 Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS". Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A090826 Convolution of Catalan and Fibonacci numbers. 6
 0, 1, 2, 5, 12, 31, 85, 248, 762, 2440, 8064, 27300, 94150, 329462, 1166512, 4170414, 15031771, 54559855, 199236416, 731434971, 2697934577, 9993489968, 37157691565, 138633745173, 518851050388, 1947388942885, 7328186394725 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS Also (with a(0)=1 instead of 0): Number of fixed points in range [A014137(n-1)..A014138(n-1)] of permutation A089867/A089868, i.e., the number of n-node binary trees fixed by the corresponding automorphism(s). a(n) = A139375(n,1) for n > 0. - Reinhard Zumkeller, Aug 28 2013 REFERENCES He, Tian-Xiao, and Sprugnoli, Renzo; Sequence characterization of Riordan arrays. Discrete Math. 309 (2009), no. 12, 3962-3974. [From N. J. A. Sloane, Nov 26 2011] LINKS Reinhard Zumkeller, Table of n, a(n) for n = 0..1000 FORMULA CONV(A000045, A000108). G.f.: (1-(1-4x)^(1/2))/(2(1-x-x^2)). The generating function for the convolution of Catalan and Fibonacci numbers is simply the generating functions of the Catalan and Fibonacci numbers multiplied together. - Molly Leonard (maleonard1(AT)stthomas.edu), Aug 04 2006 For n>1, a(n) = a(n-1) + a(n-2) + A000108(n-1). - Gerald McGarvey, Sep 19 2008 Conjecture: n*a(n) + (-5*n+6)*a(n-1) + 3*(n-2)*a(n-2) + 2*(2*n-3)*a(n-3)=0. - R. J. Mathar, Jul 09 2013 MATHEMATICA CoefficientList[Series[(1-(1-4x)^(1/2))/(2(1-x-x^2)), {x, 0, 30}], x]  (* Harvey P. Dale, Apr 05 2011 *) PROG (MIT Scheme) (define (A090826 n) (convolve A000045 A000108 n)) (define (convolve fun1 fun2 upto_n) (let loop ((i 0) (j upto_n)) (if (> i upto_n) 0 (+ (* (fun1 i) (fun2 j)) (loop (+ i 1) (- j 1)))))) (Haskell) import Data.List (inits) a090826 n = a090826_list !! n a090826_list = map (sum . zipWith (*) a000045_list . reverse) \$                    tail \$ inits a000108_list -- Reinhard Zumkeller, Aug 28 2013 CROSSREFS Cf. Catalan numbers: A000108, Fibonacci numbers: A000045. Sequence in context: A160999 A014329 A045633 * A132441 A000840 A232215 Adjacent sequences:  A090823 A090824 A090825 * A090827 A090828 A090829 KEYWORD nonn,easy AUTHOR Antti Karttunen, Dec 20 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.