

A059750


Decimal expansion of zeta(1/2) (negated).


13



1, 4, 6, 0, 3, 5, 4, 5, 0, 8, 8, 0, 9, 5, 8, 6, 8, 1, 2, 8, 8, 9, 4, 9, 9, 1, 5, 2, 5, 1, 5, 2, 9, 8, 0, 1, 2, 4, 6, 7, 2, 2, 9, 3, 3, 1, 0, 1, 2, 5, 8, 1, 4, 9, 0, 5, 4, 2, 8, 8, 6, 0, 8, 7, 8, 2, 5, 5, 3, 0, 5, 2, 9, 4, 7, 4, 5, 0, 0, 6, 2, 5, 2, 7, 6, 4, 1, 9, 3, 7, 5, 4, 6, 3, 3, 5, 6, 8, 1
(list;
constant;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,2


COMMENTS

Zeta(1/2) can be calculated as a limit similar to the limit for the EulerMascheroni constant or Euler gamma. [Mats Granvik Nov 14 2012]
The WolframAlpha link gives 3 series and 3 integrals for zeta(1/2). To extend the sequence, click "More digits" repeatedly.  Jonathan Sondow, Jun 20 2013


LINKS

Harry J. Smith, Table of n, a(n) for n=1,...,5000
J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function
WolframAlpha, zeta(1/2)


FORMULA

Zeta(1/2) = Limit of Sum from n=1 to n=k of 1/n^(1/2) 2*k^(1/2), as k goes to infinity. (According to Mathematica 8). [Mats Granvik Nov 14 2012]


EXAMPLE

1.4603545088095868128894991525152980124672293310125814905428860878...


MAPLE

Digits := 120; evalf(Zeta(1/2));


MATHEMATICA

RealDigits[ Zeta[1/2], 10, 111][[1]] (* Robert G. Wilson v, Oct 11 2005 *)
RealDigits[N[Limit[Sum[1/Sqrt[n], {n, 1, k}]  2*Sqrt[k], k > Infinity], 90]][[1]] (* Mats Granvik Nov 14 2012 *)


PROG

(PARI) { default(realprecision, 5080); x=zeta(1/2); for (n=1, 5000, d=floor(x); x=(xd)*10; write("b059750.txt", n, " ", d)); } [Harry J. Smith, Jun 29 2009]


CROSSREFS

Cf. A161688 (continued fraction).
Sequence in context: A204017 A021960 A096256 * A243983 A117036 A016723
Adjacent sequences: A059747 A059748 A059749 * A059751 A059752 A059753


KEYWORD

nonn,cons


AUTHOR

Peter Walker (peterw(AT)aus.ac.ae), Feb 11 2001


EXTENSIONS

Sign of the constant reversed by R. J. Mathar, Feb 05 2009


STATUS

approved



