login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A059750 Decimal expansion of zeta(1/2) (negated). 13
1, 4, 6, 0, 3, 5, 4, 5, 0, 8, 8, 0, 9, 5, 8, 6, 8, 1, 2, 8, 8, 9, 4, 9, 9, 1, 5, 2, 5, 1, 5, 2, 9, 8, 0, 1, 2, 4, 6, 7, 2, 2, 9, 3, 3, 1, 0, 1, 2, 5, 8, 1, 4, 9, 0, 5, 4, 2, 8, 8, 6, 0, 8, 7, 8, 2, 5, 5, 3, 0, 5, 2, 9, 4, 7, 4, 5, 0, 0, 6, 2, 5, 2, 7, 6, 4, 1, 9, 3, 7, 5, 4, 6, 3, 3, 5, 6, 8, 1 (list; constant; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Zeta(1/2) can be calculated as a limit similar to the limit for the Euler-Mascheroni constant or Euler gamma. [Mats Granvik Nov 14 2012]

The WolframAlpha link gives 3 series and 3 integrals for zeta(1/2). To extend the sequence, click "More digits" repeatedly. - Jonathan Sondow, Jun 20 2013

LINKS

Harry J. Smith, Table of n, a(n) for n=1,...,5000

J. Sondow and E. W. Weisstein, MathWorld: Riemann Zeta Function

WolframAlpha, zeta(1/2)

FORMULA

Zeta(1/2) = Limit of Sum from n=1 to n=k of 1/n^(1/2) -2*k^(1/2), as k goes to infinity. (According to Mathematica 8). [Mats Granvik Nov 14 2012]

EXAMPLE

-1.4603545088095868128894991525152980124672293310125814905428860878...

MAPLE

Digits := 120; evalf(Zeta(1/2));

MATHEMATICA

RealDigits[ Zeta[1/2], 10, 111][[1]] (* Robert G. Wilson v, Oct 11 2005 *)

RealDigits[N[Limit[Sum[1/Sqrt[n], {n, 1, k}] - 2*Sqrt[k], k -> Infinity], 90]][[1]] (* Mats Granvik Nov 14 2012 *)

PROG

(PARI) { default(realprecision, 5080); x=-zeta(1/2); for (n=1, 5000, d=floor(x); x=(x-d)*10; write("b059750.txt", n, " ", d)); } [Harry J. Smith, Jun 29 2009]

CROSSREFS

Cf. A161688 (continued fraction).

Sequence in context: A204017 A021960 A096256 * A243983 A117036 A016723

Adjacent sequences:  A059747 A059748 A059749 * A059751 A059752 A059753

KEYWORD

nonn,cons

AUTHOR

Peter Walker (peterw(AT)aus.ac.ae), Feb 11 2001

EXTENSIONS

Sign of the constant reversed by R. J. Mathar, Feb 05 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 26 20:19 EST 2014. Contains 250119 sequences.