The OEIS is supported by the many generous donors to the OEIS Foundation.

 Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 59th year, we have over 358,000 sequences, and we’ve crossed 10,300 citations (which often say “discovered thanks to the OEIS”). Other ways to Give
 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A003603 Fractal sequence obtained from Fibonacci numbers (or Wythoff array). (Formerly M0138) 64
 1, 1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 6, 4, 3, 7, 2, 8, 5, 1, 9, 6, 4, 10, 3, 11, 7, 2, 12, 8, 5, 13, 1, 14, 9, 6, 15, 4, 16, 10, 3, 17, 11, 7, 18, 2, 19, 12, 8, 20, 5, 21, 13, 1, 22, 14, 9, 23, 6, 24, 15, 4, 25, 16, 10, 26, 3, 27, 17, 11, 28, 7, 29, 18, 2, 30, 19, 12, 31, 8, 32, 20, 5, 33 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,4 COMMENTS Length of n-th row = A000045(n); last term of n-th row = A094967(n-1); sum of n-th row = A033192(n-1). [Reinhard Zumkeller, Jan 26 2012] REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Reinhard Zumkeller, Rows n=1..20 of triangle, flattened J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences David Garth and Joseph Palmer, Self-Similar Sequences and Generalized Wythoff Arrays, Fibonacci Quart. 54 (2016), no. 1, 72-78. Clark Kimberling, Fractal sequences Clark Kimberling, Numeration systems and fractal sequences, Acta Arithmetica 73 (1995) 103-117. N. J. A. Sloane, Classic Sequences FORMULA Vertical para-budding sequence: says which row of Wythoff array (starting row count at 1) contains n. If one deletes the first occurrence of 1, 2, 3, ... the sequence is unchanged. From Clark Kimberling, Oct 29 2009: (Start) The fractal sequence of the Wythoff array can be constructed without reference to the Wythoff array or Fibonacci numbers. Write initial rows: Row 1: .... 1 Row 2: .... 1 Row 3: .... 1..2 Row 4: .... 1..3..2 For n>4, to form row n+1, let k be the least positive integer not yet used; write row n, and right after the first number that is also in row n-1, place k; right after the next number that is also in row n-1, place k+1, and continue. A003603 is the concatenation of the rows. (End) EXAMPLE In the recurrence for making new rows, we get row 5 from row 4 thus: write row 4: 1,3,2, and then place 4 right after 1, and place 5 right after 2, getting 1,4,3,2,5. - Clark Kimberling, Oct 29 2009 MAPLE A003603 := proc(n::posint)     local r, c, W ;     for r from 1 do         for c from 1 do             W := A035513(r, c) ;             if W = n then                 return r ;             elif W > n then                 break ;             end if;         end do:     end do: end proc: seq(A003603(n), n=1..100) ; # R. J. Mathar, Aug 13 2021 MATHEMATICA num[n_, b_] := Last[NestWhile[{Mod[#[[1]], Last[#[[2]]]], Drop[#[[2]], -1], Append[#[[3]], Quotient[#[[1]], Last[#[[2]]]]]} &, {n, b, {}}, #[[2]] =!= {} &]]; left[n_, b_] := If[Last[num[n, b]] == 0, Dot[num[n, b], Rest[Append[Reverse[b], 0]]], n]; fractal[n_, b_] := # - Count[Last[num[Range[#], b]], 0] &@    FixedPoint[left[#, b] &, n]; Table[fractal[n, Table[Fibonacci[i], {i, 2, 12}]], {n, 30}] (* Birkas Gyorgy, Apr 13 2011 *) row[1] = row[2] = {1}; row[n_] := row[n] = Module[{ro, pos, lp, ins}, ro = row[n-1]; pos = Position[ro, Alternatives @@ Intersection[ro, row[n-2]]] // Flatten; lp = Length[pos]; ins = Range[lp] + Max[ro]; Do[ro = Insert[ro, ins[[i]], pos[[i]] + i], {i, 1, lp}]; ro]; Array[row, 9] // Flatten (* Jean-François Alcover, Jul 12 2016 *) PROG (Haskell)  -- according to Kimberling, see formula section. a003603 n k = a003603_row n !! (k-1) a003603_row n = a003603_tabl !! (n-1) a003603_tabl = [1] : [1] : wythoff [2..] [1] [1] where    wythoff is xs ys = f is xs ys [] where       f js     []     []     ws = ws : wythoff js ys ws       f js     []     [v]    ws = f js [] [] (ws ++ [v])       f (j:js) (u:us) (v:vs) ws         | u == v = f js us vs (ws ++ [v, j])         | u /= v = f (j:js) (u:us) vs (ws ++ [v]) -- Reinhard Zumkeller, Jan 26 2012 CROSSREFS Equals A019586(n) + 1. Cf. A003602, A000045, A035513, A033192, A094967, A265650. Sequence in context: A007336 A227539 A133334 * A278118 A255238 A212536 Adjacent sequences:  A003600 A003601 A003602 * A003604 A003605 A003606 KEYWORD nonn,easy,nice,eigen,tabf AUTHOR EXTENSIONS More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003 Keyword tabf added by Reinhard Zumkeller, Jan 26 2012 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified November 26 04:03 EST 2022. Contains 358353 sequences. (Running on oeis4.)