login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 56th year, we are closing in on 350,000 sequences, and we’ve crossed 9,700 citations (which often say “discovered thanks to the OEIS”).

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A003603 Fractal sequence obtained from Fibonacci numbers (or Wythoff array).
(Formerly M0138)
60
1, 1, 1, 2, 1, 3, 2, 1, 4, 3, 2, 5, 1, 6, 4, 3, 7, 2, 8, 5, 1, 9, 6, 4, 10, 3, 11, 7, 2, 12, 8, 5, 13, 1, 14, 9, 6, 15, 4, 16, 10, 3, 17, 11, 7, 18, 2, 19, 12, 8, 20, 5, 21, 13, 1, 22, 14, 9, 23, 6, 24, 15, 4, 25, 16, 10, 26, 3, 27, 17, 11, 28, 7, 29, 18, 2, 30, 19, 12, 31, 8, 32, 20, 5, 33 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,4

COMMENTS

Length of n-th row = A000045(n); last term of n-th row = A094967(n-1); sum of n-th row = A033192(n-1). [Reinhard Zumkeller, Jan 26 2012]

REFERENCES

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Reinhard Zumkeller, Rows n=1..20 of triangle, flattened

J. H. Conway and N. J. A. Sloane, Notes on the Para-Fibonacci and related sequences

C. Kimberling, Fractal sequences

C. Kimberling, Numeration systems and fractal sequences, Acta Arithmetica 73 (1995) 103-117.

N. J. A. Sloane, Classic Sequences

FORMULA

Vertical para-budding sequence: says which row of Wythoff array (starting row count at 1) contains n.

If one deletes the first occurrence of 1, 2, 3, ... the sequence is unchanged.

From Clark Kimberling, Oct 29 2009: (Start)

The fractal sequence of the Wythoff array can be constructed without reference to the Wythoff array or Fibonacci numbers. Write initial rows:

Row 1: .... 1

Row 2: .... 1

Row 3: .... 1..2

Row 4: .... 1..3..2

For n>4, to form row n+1, let k be the least positive integer not yet used; write row n, and right after the first number that is also in row n-1, place k; right after the next number that is also in row n-1, place k+1, and continue. A003603 is the concatenation of the rows. (End)

EXAMPLE

In the recurrence for making new rows, we get row 5 from row 4 thus: write row 4: 1,3,2, and then place 4 right after 1, and place 5 right after 2, getting 1,4,3,2,5. - Clark Kimberling, Oct 29 2009

MAPLE

A003603 := proc(n::posint)

    local r, c, W ;

    for r from 1 do

        for c from 1 do

            W := A035513(r, c) ;

            if W = n then

                return r ;

            elif W > n then

                break ;

            end if;

        end do:

    end do:

end proc:

seq(A003603(n), n=1..100) ; # R. J. Mathar, Aug 13 2021

MATHEMATICA

num[n_, b_] := Last[NestWhile[{Mod[#[[1]], Last[#[[2]]]], Drop[#[[2]], -1], Append[#[[3]], Quotient[#[[1]], Last[#[[2]]]]]} &, {n, b, {}}, #[[2]] =!= {} &]];

left[n_, b_] := If[Last[num[n, b]] == 0, Dot[num[n, b], Rest[Append[Reverse[b], 0]]], n];

fractal[n_, b_] := # - Count[Last[num[Range[#], b]], 0] &@

   FixedPoint[left[#, b] &, n];

Table[fractal[n, Table[Fibonacci[i], {i, 2, 12}]], {n, 30}] (* Birkas Gyorgy, Apr 13 2011 *)

row[1] = row[2] = {1};

row[n_] := row[n] = Module[{ro, pos, lp, ins}, ro = row[n-1]; pos = Position[ro, Alternatives @@ Intersection[ro, row[n-2]]] // Flatten; lp = Length[pos]; ins = Range[lp] + Max[ro]; Do[ro = Insert[ro, ins[[i]], pos[[i]] + i], {i, 1, lp}]; ro];

Array[row, 9] // Flatten (* Jean-François Alcover, Jul 12 2016 *)

PROG

(Haskell)  -- according to Kimberling, see formula section.

a003603 n k = a003603_row n !! (k-1)

a003603_row n = a003603_tabl !! (n-1)

a003603_tabl = [1] : [1] : wythoff [2..] [1] [1] where

   wythoff is xs ys = f is xs ys [] where

      f js     []     []     ws = ws : wythoff js ys ws

      f js     []     [v]    ws = f js [] [] (ws ++ [v])

      f (j:js) (u:us) (v:vs) ws

        | u == v = f js us vs (ws ++ [v, j])

        | u /= v = f (j:js) (u:us) vs (ws ++ [v])

-- Reinhard Zumkeller, Jan 26 2012

CROSSREFS

Equals A019586(n) + 1. Cf. A003602, A000045, A035513, A033192, A094967, A265650.

Sequence in context: A007336 A227539 A133334 * A278118 A255238 A212536

Adjacent sequences:  A003600 A003601 A003602 * A003604 A003605 A003606

KEYWORD

nonn,easy,nice,eigen,tabf

AUTHOR

N. J. A. Sloane, Mira Bernstein

EXTENSIONS

More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003

Keyword tabf added by Reinhard Zumkeller, Jan 26 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 6 22:42 EST 2021. Contains 349567 sequences. (Running on oeis4.)