login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A020330 Numbers whose base 2 representation is the juxtaposition of two identical strings. 23
3, 10, 15, 36, 45, 54, 63, 136, 153, 170, 187, 204, 221, 238, 255, 528, 561, 594, 627, 660, 693, 726, 759, 792, 825, 858, 891, 924, 957, 990, 1023, 2080, 2145, 2210, 2275, 2340, 2405, 2470, 2535, 2600, 2665, 2730, 2795, 2860, 2925, 2990, 3055, 3120, 3185, 3250 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,1

COMMENTS

All differences are in union of A000051 and A001576. - Vladimir Shevelev, Dec 07 2013

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 1..8191

Daniel M. Kane, Carlo Sanna, Jeffrey Shallit, Waring's Theorem for Binary Powers, arXiv:1801.04483 [math.NT], 2018.

Parthasarathy Madhusudan, Dirk Nowotka, Aayush Rajasekaran, Jeffrey Shallit, Lagrange's Theorem for Binary Squares, arXiv:1710.04247 [math.NT] 2017.

FORMULA

a(n) = n + 2*n*2^floor(log_2(n)). - Ralf Stephan, Dec 07 2004

EXAMPLE

36 is a member because 36 = 100100_2 which is 100 followed by 100.

MATHEMATICA

Table[n + 2 n 2^Floor[Log[2, n]], {n, 50}] (* T. D. Noe, Dec 10 2013 *)

PROG

(Haskell)

a020330 n = foldr (\d v -> 2 * v + d) 0 (bs ++ bs) where

   bs = a030308_row n

-- Reinhard Zumkeller, Feb 19 2013

(PARI) a(n)=n+n<<#binary(n) \\ Charles R Greathouse IV, Mar 29 2013

(PARI) is(n)=my(L=#binary(n)\2); n>>L==bitand(n, 2^L-1) \\ Charles R Greathouse IV, Mar 29 2013

(MAGMA) [n+2*n*2^Floor(Log(2, n)): n in [1..50]]; // Vincenzo Librandi, Apr 05 2018

CROSSREFS

Subsequence of A121016.

Cf. A062383, A030308, A007088.

Column k=0 of A246830, column k=1 of A246834.

Sequence in context: A129307 A186575 A233312 * A023861 A037345 A217278

Adjacent sequences:  A020327 A020328 A020329 * A020331 A020332 A020333

KEYWORD

nonn,base,easy,look

AUTHOR

David W. Wilson, Melia Aldridge (ma38(AT)spruce.evansville.edu)

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified May 26 09:41 EDT 2018. Contains 304600 sequences. (Running on oeis4.)