OFFSET
0,4
LINKS
Seiichi Manyama, Table of n, a(n) for n = 0..1668
Paul Barry, On a Central Transform of Integer Sequences, arXiv:2004.04577 [math.CO], 2020.
Paul Barry, Centered polygon numbers, heptagons and nonagons, and the Robbins numbers, arXiv:2104.01644 [math.CO], 2021.
Ângela Mestre and José Agapito, A Family of Riordan Group Automorphisms, J. Int. Seq., Vol. 22 (2019), Article 19.8.5.
FORMULA
O.g.f.: 1/c(x) = 1-x*c(x) with the o.g.f. c(x):=(1-sqrt(1-4*x))/(2*x) of A000108 (Catalan numbers).
a(0) = 1, a(n) = -C(n-1), n>=1, with C(n):=A000108(n) (Catalan).
G.f.: (1 + sqrt(1-4*x))/2=U(0) where U(k)=1 - x/U(k+1) ; (continued fraction, 1-step). - Sergei N. Gladkovskii, Oct 29 2012
G.f.: 1/G(0) where G(k) = 1 - x/(x - 1/G(k+1) ); (continued fraction). - Sergei N. Gladkovskii, Dec 12 2012
G.f.: G(0), where G(k)= 2*x*(2*k+1) + k + 1 - 2*x*(k+1)*(2*k+3)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013
D-finite with recurrence n*a(n) +2*(-2*n+3)*a(n-1)=0. a(n) = A002420(n)/2, n>0. - R. J. Mathar, Aug 09 2015
a(n) ~ -2^(2*n-2) / (sqrt(Pi)*n^(3/2)). - Vaclav Kotesovec, May 06 2021
CROSSREFS
KEYWORD
sign,easy
AUTHOR
Wolfdieter Lang, Jan 13 2006
STATUS
approved