The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006820 Number of connected regular simple graphs of degree 4 (or quartic graphs) with n nodes. (Formerly M1617) 33
 1, 0, 0, 0, 0, 1, 1, 2, 6, 16, 59, 265, 1544, 10778, 88168, 805491, 8037418, 86221634, 985870522, 11946487647, 152808063181, 2056692014474, 29051272833609, 429668180677439, 6640165204855036, 107026584471569605, 1796101588825595008, 31333997930603283531, 567437240683788292989 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,8 COMMENTS The null graph on 0 vertices is vacuously connected and 4-regular. - Jason Kimberley, Jan 29 2011 The Multiset Transform of this sequence gives a triangle which gives in row n and column k the 4-regular simple graphs with n>=1 nodes and k>=1 components (row sums A033301), starting: ; ; ; ; 1 ; 1 ; 2 ; 6 ; 16 ; 59 1 ; 265 1 ; 1544 3 ; 10778 8 ; 88168 25 ; 805491 87 1 ; 8037418 377 1 ; 86221634 2023 3 ; 985870522 13342 9 ; 11946487647 104568 27 ; 152808063181 930489 96 1 ;  - R. J. Mathar, Jun 02 2022 REFERENCES CRC Handbook of Combinatorial Designs, 1996, p. 648. I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978. R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998. N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS M. Meringer, Tables of Regular Graphs M. Meringer, Fast generation of regular graphs and construction of cages, J. Graph Theory 30 (2) (1999) 137-146. [Jason Kimberley, Nov 24 2009] M. Meringer, GenReg, Generation of regular graphs, program. Markus Meringer, H. James Cleaves, Stephen J. Freeland, Beyond Terrestrial Biology: Charting the Chemical Universe of α-Amino Acid Structures, Journal of Chemical Information and Modeling, 53.11 (2013), pp. 2851-2862. Eric Weisstein's World of Mathematics, Connected Graph Eric Weisstein's World of Mathematics, Quartic Graph Eric Weisstein's World of Mathematics, Regular Graph Zhipeng Xu, Xiaolong Huang, Fabian Jimenez, Yuefan Deng, A new record of enumeration of regular graphs by parallel processing, arXiv:1907.12455 [cs.DM], 2019. FORMULA a(n) = A184943(n) + A033886(n). a(n) = A033301(n) - A033483(n). Inverse Euler transform of A033301. Row sums of A184940. - R. J. Mathar, May 30 2022 CROSSREFS From Jason Kimberley, Mar 27 2010 and Jan 29 2011: (Start) 4-regular simple graphs: this sequence (connected), A033483 (disconnected), A033301 (not necessarily connected). Connected regular simple graphs: A005177 (any degree), A068934 (triangular array); specified degree k: A002851 (k=3), this sequence (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), A014384 (k=11). Connected 4-regular simple graphs with girth at least g: this sequence (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6). Connected 4-regular simple graphs with girth exactly g: A184943 (g=3), A184944 (g=4), A184945 (g=5). Connected 4-regular graphs: this sequence (simple), A085549 (multigraphs with loops allowed), A129417  (multigraphs with loops verboten). (End) Sequence in context: A221841 A068787 A073959 * A131385 A027742 A324062 Adjacent sequences:  A006817 A006818 A006819 * A006821 A006822 A006823 KEYWORD nonn,nice,hard AUTHOR EXTENSIONS a(19)-a(22) were appended by Jason Kimberley on Sep 04 2009, Nov 24 2009, Mar 27 2010, and Mar 18 2011, from running M. Meringer's GENREG for 3.4, 44, and 403 processor days, and 15.5 processor years, at U. Ncle. a(22) corrected and a(23)-a(28) from Andrew Howroyd, Mar 10 2020 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 24 18:11 EDT 2022. Contains 356949 sequences. (Running on oeis4.)