

A014384


Number of connected regular graphs of degree 11 with 2n nodes.


13




OFFSET

0,8


COMMENTS

Since the nontrivial 11regular graph with the least number of vertices is K_12, there are no disconnected 11regular graphs with less than 24 vertices. Thus for n<24 this sequence also counts the number of all 11regular graphs on 2n vertices.  Jason Kimberley, Sep 25 2009


REFERENCES

CRC Handbook of Combinatorial Designs, 1996, p. 648.
I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131135 of Problèmes combinatoires et théorie des graphes (Orsay, 913 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.


LINKS

Table of n, a(n) for n=0..8.
Jason Kimberley, Index of sequences counting connected kregular simple graphs with girth at least g
M. Meringer, Tables of Regular Graphs
Eric Weisstein's World of Mathematics, Regular Graph


EXAMPLE

The null graph on 0 vertices is vacuously connected and 11regular; since it is acyclic, it has infinite girth.  Jason Kimberley, Feb 10 2011


CROSSREFS

11regular simple graphs: this sequence (connected), A185213 (disconnected).
Connected regular simple graphs (with girth at least 3): A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), this sequence (k=11).
Sequence in context: A055313 A128669 A013866 * A185213 A034248 A177027
Adjacent sequences: A014381 A014382 A014383 * A014385 A014386 A014387


KEYWORD

nonn,hard,more


AUTHOR

N. J. A. Sloane


STATUS

approved



