

A014384


Number of connected regular graphs of degree 11 with 2n nodes.


13




OFFSET

0,8


COMMENTS

Since the nontrivial 11regular graph with the least number of vertices is K_12, there are no disconnected 11regular graphs with less than 24 vertices. Thus for n<24 this sequence also counts the number of all 11regular graphs on 2n vertices. [From Jason Kimberley, Sep 25 2009]


REFERENCES

CRC Handbook of Combinatorial Designs, 1996, p. 648.
I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131135 of Probl\`{e}mes combinatoires et th\'{e}orie des graphes (Orsay, 913 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.


LINKS

Table of n, a(n) for n=0..8.
Jason Kimberley, Index of sequences counting connected kregular simple graphs with girth at least g
M. Meringer, Tables of Regular Graphs
Eric Weisstein's World of Mathematics, Regular Graph


EXAMPLE

The null graph on 0 vertices is vacuously connected and 11regular; since it is acyclic, it has infinite girth. [From Jason Kimberley, Feb 10 2011]


CROSSREFS

11regular simple graphs: this sequence (connected), A185213 (disconnected).
Connected regular simple graphs (with girth at least 3): A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), this sequence (k=11).
Sequence in context: A055313 A128669 A013866 * A185213 A034248 A177027
Adjacent sequences: A014381 A014382 A014383 * A014385 A014386 A014387


KEYWORD

nonn,hard,more


AUTHOR

N. J. A. Sloane.


STATUS

approved



