%I
%S 1,0,0,0,0,0,1,13,8037796
%N Number of connected regular graphs of degree 11 with 2n nodes.
%C Since the nontrivial 11regular graph with the least number of vertices is K_12, there are no disconnected 11regular graphs with less than 24 vertices. Thus for n<24 this sequence also gives the number of all 11regular graphs on 2n vertices.  _Jason Kimberley_, Sep 25 2009
%D CRC Handbook of Combinatorial Designs, 1996, p. 648.
%D I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131135 of Problèmes combinatoires et théorie des graphes (Orsay, 913 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978.
%H Jason Kimberley, <a href="/wiki/User:Jason_Kimberley/C_kreg_girth_ge_g_index">Index of sequences counting connected kregular simple graphs with girth at least g</a>
%H M. Meringer, <a href="http://www.mathe2.unibayreuth.de/markus/reggraphs.html">Tables of Regular Graphs</a>
%H Eric Weisstein's World of Mathematics, <a href="http://mathworld.wolfram.com/RegularGraph.html">Regular Graph</a>
%e The null graph on 0 vertices is vacuously connected and 11regular; since it is acyclic, it has infinite girth.  _Jason Kimberley_, Feb 10 2011
%Y 11regular simple graphs: this sequence (connected), A185213 (disconnected).
%Y Connected regular simple graphs (with girth at least 3): A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), A014382 (k=10), this sequence (k=11).
%K nonn,hard,more
%O 0,8
%A _N. J. A. Sloane_
