This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A014382 Number of connected regular graphs of degree 10 with n nodes. 13
 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 10, 540, 805579, 2585136741, 9799685588961 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,14 COMMENTS Since the nontrivial 10-regular graph with the least number of vertices is K_11, there are no disconnected 10-regular graphs with less than 22 vertices. Thus for n<22 this sequence also gives the number of all 10-regular graphs on n vertices. - Jason Kimberley, Sep 25 2009 REFERENCES CRC Handbook of Combinatorial Designs, 1996, p. 648. I. A. Faradzev, Constructive enumeration of combinatorial objects, pp. 131-135 of Problèmes combinatoires et théorie des graphes (Orsay, 9-13 Juillet 1976). Colloq. Internat. du C.N.R.S., No. 260, Centre Nat. Recherche Scient., Paris, 1978. M. Meringer, Fast Generation of Regular Graphs and Construction of Cages. Journal of Graph Theory, 30 (1999), 137-146. LINKS M. Meringer, Tables of Regular Graphs Eric Weisstein's World of Mathematics, Regular Graph. EXAMPLE The null graph on 0 vertices is vacuously connected and 10-regular; since it is acyclic, it has infinite girth. - Jason Kimberley, Feb 10 2011 CROSSREFS 10-regular simple graphs: this sequence (connected), A185203 (disconnected). Connected regular simple graphs A005177 (any degree), A068934 (triangular array), specified degree k: A002851 (k=3), A006820 (k=4), A006821 (k=5), A006822 (k=6), A014377 (k=7), A014378 (k=8), A014381 (k=9), this sequence (k=10), A014384 (k=11). Sequence in context: A003399 A180359 A289200 * A325147 A035308 A327412 Adjacent sequences:  A014379 A014380 A014381 * A014383 A014384 A014385 KEYWORD nonn,hard,more AUTHOR EXTENSIONS Using the symmetry of A051031, a(16) and a(17) from Jason Kimberley, Sep 25 2009 and Jan 03 2011 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified October 17 16:42 EDT 2019. Contains 328120 sequences. (Running on oeis4.)