login
A033301
Number of 4-valent (or quartic) graphs with n nodes.
17
1, 0, 0, 0, 0, 1, 1, 2, 6, 16, 60, 266, 1547, 10786, 88193, 805579, 8037796, 86223660, 985883873, 11946592242, 152808993767, 2056701139136, 29051369533596, 429669276147047, 6640178380127244, 107026751932268789, 1796103830404560857, 31334029441145918974, 567437704731717802783
OFFSET
0,8
COMMENTS
Because the triangle A051031 is symmetric, a(n) is also the number of (n-5)-regular graphs on n vertices. - Jason Kimberley, Sep 22 2009
REFERENCES
R. C. Read and R. J. Wilson, An Atlas of Graphs, Oxford, 1998.
LINKS
M. Meringer, Erzeugung Regulaerer Graphen, Diploma thesis, University of Bayreuth, January 1996. [From Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 25 2010]
N. J. A. Sloane, Transforms
Peter Steinbach, Field Guide to Simple Graphs, Volume 1, Part 17 (For Volumes 1, 2, 3, 4 of this book see A000088, A008406, A000055, A000664, respectively.)
Eric Weisstein's World of Mathematics, Quartic Graph
FORMULA
Euler transform of A006820. - Martin Fuller, Dec 04 2006
MATHEMATICA
A006820 = Cases[Import["https://oeis.org/A006820/b006820.txt", "Table"], {_, _}][[All, 2]];
(* EulerTransform is defined in A005195 *)
EulerTransform[Rest @ A006820] (* Jean-François Alcover, Nov 26 2019, updated Mar 17 2020 *)
CROSSREFS
4-regular simple graphs: A006820 (connected), A033483 (disconnected), this sequence (not necessarily connected).
Regular graphs A005176 (any degree), A051031 (triangular array), chosen degrees: A000012 (k=0), A059841 (k=1), A008483 (k=2), A005638 (k=3), A033301 (k=4), A165626 (k=5), A165627 (k=6), A165628 (k=7).
Sequence in context: A131385 A027742 A324062 * A197102 A093113 A150030
KEYWORD
nonn,nice,hard
AUTHOR
Ronald C. Read
EXTENSIONS
a(16) from Axel Kohnert (kohnert(AT)uni-bayreuth.de), Jul 24 2003
a(17)-a(19) from Jason Kimberley, Sep 12 2009
a(20)-a(21) from Herman Jamke (hermanjamke(AT)fastmail.fm), Sep 25 2010
a(22) from Jason Kimberley, Oct 15 2011
a(22) corrected and a(23)-a(28) from Andrew Howroyd, Mar 08 2020
STATUS
approved