OFFSET
1,2
COMMENTS
Also the number of different potential face pairing graphs for closed 3-manifold triangulations.
Computed from A129429 by an inverse Euler transform. - R. J. Mathar, Mar 09 2019
REFERENCES
B. A. Burton, Minimal triangulations and face pairing graphs, preprint, 2003.
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..40
B. A. Burton, Regina (3-manifold topology software).
B. A. Burton, Minimal triangulations and normal surfaces, Ph.D. thesis, University of Melbourne, 2003.
B. A. Burton, Face pairing graphs and 3-manifold enumeration, arXiv:math/0307382 [math.GT], 2003.
B. A. Burton, Enumeration of non-orientable 3-manifolds using face-pairing graphs and union-find, Discrete and Computational Geometry, 38 (2007), 527-571.
R. de Mello Koch, S. Ramgoolam, Strings from Feynman graph counting: Without large N, Phys. Rev. D 85 (2012) 026007
H. Kleinert, A. Pelster, B. Kastening, M. Bachmann, Recursive graphical construction of Feynman diagrams and their multiplicities in Phi^4 and Phi^2*A theory, Phys. Rev. E 62 (2) (2000), 1537 eq (4.20) or arXiv:hep-th/9907168, 1999.
B. Martelli and C. Petronio, Three-manifolds having complexity at most 9, Experiment. Math., Vol. 10 (2001), pp. 207-236
R. J. Mathar, Illustrations
FORMULA
Inverse Euler transform of A129429.
MATHEMATICA
PROG
Can be generated using Regina (see link above), although generation is slow.
CROSSREFS
KEYWORD
hard,nonn
AUTHOR
Benjamin A. Burton (bab(AT)debian.org), Jul 04 2003
EXTENSIONS
a(12)-a(16) from Brendan McKay, Apr 15 2007, computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
Edited by N. J. A. Sloane, Oct 01 2007
a(17)-a(23) from A129429 from Jean-François Alcover, Dec 03 2019
STATUS
approved