login
A184940
Irregular triangle C(n,g) counting the connected 4-regular simple graphs on n vertices with girth exactly g.
8
1, 1, 2, 5, 1, 16, 0, 57, 2, 263, 2, 1532, 12, 10747, 31, 87948, 220, 803885, 1606, 8020590, 16828, 86027734, 193900, 983417704, 2452818, 11913817317, 32670329, 1, 152352034707, 456028472, 2, 2050055948375, 6636066091, 8, 28466137588780, 100135577616, 131
OFFSET
5,3
COMMENTS
The first column is for girth exactly 3. The row length sequence starts: 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4. The row length is incremented to g-2 when n reaches A037233(g).
EXAMPLE
1;
1;
2;
5, 1;
16, 0;
57, 2;
263, 2;
1532, 12;
10747, 31;
87948, 220;
803885, 1606;
8020590, 16828;
86027734, 193900;
983417704, 2452818;
11913817317, 32670329, 1;
152352034707, 456028472, 2;
2050055948375, 6636066091, 8;
28466137588780, 100135577616, 131;
CROSSREFS
Connected 4-regular simple graphs with girth at least g: A184941 (triangle); chosen g: A006820 (g=3), A033886 (g=4), A058343 (g=5), A058348 (g=6).
Connected 4-regular simple graphs with girth exactly g: this sequence (triangle); chosen g: A184943 (g=3), A184944 (g=4), A184945 (g=5), A184946 (g=6).
Triangular arrays C(n,g) counting connected simple k-regular graphs on n vertices with girth exactly g: A198303 (k=3), this sequence (k=4), A184950 (k=5), A184960 (k=6), A184970 (k=7), A184980 (k=8).
Sequence in context: A119518 A216962 A186756 * A185140 A111797 A122104
KEYWORD
nonn,hard,tabf
AUTHOR
Jason Kimberley, Feb 24 2011
STATUS
approved