login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual appeal: Please make a donation to keep the OEIS running! Over 6000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A052750 a(n) = (2*n+1)^(n-1). E.g.f.: exp(-1/2*W(-2*x)), where W is Lambert's W function. 11
1, 1, 5, 49, 729, 14641, 371293, 11390625, 410338673, 16983563041, 794280046581, 41426511213649, 2384185791015625, 150094635296999121, 10260628712958602189, 756943935220796320321, 59938945498865420543457 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

a(n+1) is the number of labeled incomplete ternary trees on n vertices in which each left child has a larger label than its parent. - Brian Drake, Jul 28 2008

Put a(0) = 1. For n>0, let x(n,k) = 2*cos((2*k-1)*Pi/(2*n+1)), k=1..n. Define the recurrences S(n;0,x(n,k)) = 1, S(n;1,x(n,k)) = x(n,k), S(n;r,x(n,k)) = x(n,k)*S(n;r-1,x(n,k)) - S(n;r-2,x(n,k)), r>1 an integer, k=1..n. CONJECTURE: For n>0, a(n) = Product_{k=1..n} (Sum_{m=0..n-1} S(n;2*m,x(n,k))^2). - L. Edson Jeffery, Sep 11 2013

Comment from Wolfdieter Lang, Dec 16 2013 (Start):

Discriminants of the first difference of Chebyshev S-polynomials.

The coefficient table for the first difference polynomials P(n, x) = S(n, x) - S(n-1, x), n>=0, S(-1, x) = 0, with the Chebyshev S polynomials (see A049310), is given in A130777.

For the discriminant of a polynomial in terms of the square of a determinant of a Vandermonde matrix build from the zeros of the polynomial see, e.g., A127670.

For the proof that D(n) := discriminant(P(n,x)) = (2*n+1)^(n-1), n >= 1, use the formula given e.g., in the Rivlin reference, p. 218, Theorem 5.13, eq. (5.3), namely D(n) = (-1)^(n*(n-1)/2)*product(P'(n, x(n,j)),j=1..n), with the zeros x(n,j) = -2*cos(2*Pi*j/(2*n+1)) of P(n, x) (see A130777). P'(n, x(n,j)) = (2*n+1)*P(n-1, x(n,j))/(2*sin(Pi*j/(2*n+1))*2*cos(Pi*j/(2*n+1)))^2. P(n-1, x(n,j)) = (-1)^(n+j)*2*cos(Pi*j/(2*n+1)). product(2*sin(Pi*j/(2*n+1))^, j=1..n) = 2*n+1 (see the Oct 10 2013 formula in A005408. product(2*cos(Pi*j/(2*n+1)),j=1..n) = 1, because S(2*n, 0) = (-1)^n.

(End)

REFERENCES

Theodore J. Rivlin, Chebyshev polynomials: from approximation theory to algebra and number theory, 2. ed., Wiley, New York, 1990.

LINKS

G. C. Greubel, Table of n, a(n) for n = 0..350

INRIA Algorithms Project, Encyclopedia of Combinatorial Structures 706

J.-C. Novelli, J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.

Index entries for sequences related to Chebyshev polynomials.

FORMULA

E.g.f. satisfies: A(x) = sqrt(1 + 2*Sum_{n>=1} x^(2*n-1)/(2*n-1)! * A(x)^(4*n-1)). - Paul D. Hanna, Sep 07 2012

E.g.f. satisfies: A(x) = 1/A(-x*A(x)^4). - Paul D. Hanna, Sep 07 2012

a(n) = discriminant of P(n,x) = S(n,x) - S(n-1,x), n >= 1., with the Chebyshev S polynomials from A049310. For the proof see the comment above. a(n) is also the discriminant of S(n,x) + S(n-1,x) = (-1)^n*(S(n,-x) - S(n-1,-x)). - Wolfdieter Lang, Dec 16 2013

From Peter Bala, Dec 19 2013: (Start)

The e.g.f. A(x) = 1 + x + 5*x^2/2! + 49*x^3/3! + 729*x^4/4! + ... satisfies:

1) A(x*exp(-2*x)) = exp(x) = 1/A(-x*exp(2*x));

2) A^2(x) = 1/x*series reversion(x*exp(-2*x));

3) A(x^2) = 1/x*series reversion(x*exp(-x^2));

4) A(x) = exp(x*A(x)^2). (End)

E.g.f.: sqrt(-LambertW(-2*x)/(2*x)). - Vaclav Kotesovec, Dec 07 2014

Related to A001705 by Sum_{n >= 1} a(n)*x^n/n! = series reversion( 1/(1 + x)^2*log(1 + x) ) = series reversion(x - 5*x^2/2! + 26*x^3/3! - 154*x^4/4! + ...). Cf. A000272, A052752, A052774, A052782. - Peter Bala, Jun 15 2016

EXAMPLE

Discriminant: n=4: P(4, x) = 1 + 2*x - 3*x^2 - x^3 + x^4 with the zeros x[1] = -2*cos((2/9)*Pi), x[2] = -2*cos((4/9)*Pi), x[3] = 1, x[4] = 2*cos((1/9)*Pi). D(4) = (Det(Vandermonde(4,[x[1],x[2],x[3],x[4]]))^2 = 729 = a(4). - Wolfdieter Lang, Dec 16 2013

MAPLE

spec := [S, {B=Prod(Z, S, S), S=Set(B)}, labeled]: seq(combstruct[count](spec, size=n), n=0..20);

with(finance):seq(mul(cashflows([n, n, 1], 0), k=2..n), n=0..20); # Zerinvary Lajos, Dec 22 2008

MATHEMATICA

max = 16; (Series[Exp[-1/2*ProductLog[-2*x]], {x, 0, max}] // CoefficientList[#, x] & ) * Range[0, max]! (* Jean-Fran├žois Alcover, Jun 20 2013 *)

PROG

(PARI) a(n)=(2*n+1)^(n-1) \\ Charles R Greathouse IV, Nov 20 2011

(PARI) {a(n)=local(A=1+x); for(i=1, 21, A=sqrt(1+2*sum(n=1, 21, x^(2*n-1)/(2*n-1)!*A^(4*n-1))+x*O(x^n))); n!*polcoeff(A, n)} \\ Paul D. Hanna, Sep 07 2012

(MAGMA) [(2*n+1)^(n-1) : n in [0..20]]; // Wesley Ivan Hurt, Jan 20 2017

CROSSREFS

Cf. A127670, A130777. A000169, A052752, A052774, A052782, A000272.

Sequence in context: A102773 A028575 A006554 * A145088 A192557 A290755

Adjacent sequences:  A052747 A052748 A052749 * A052751 A052752 A052753

KEYWORD

easy,nonn

AUTHOR

encyclopedia(AT)pommard.inria.fr, Jan 25 2000

EXTENSIONS

Better description from Vladeta Jovovic, Sep 02 2003

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified November 21 22:32 EST 2017. Contains 295054 sequences.