This site is supported by donations to The OEIS Foundation.

 Please make a donation to keep the OEIS running. We are now in our 55th year. In the past year we added 12000 new sequences and reached 8000 citations (which often say "discovered thanks to the OEIS"). We need to raise money to hire someone to manage submissions, which would reduce the load on our editors and speed up editing. Other ways to donate

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A079343 Period 6: repeat [0, 1, 1, 2, 3, 1]; also F(n) mod 4, where F(n) = A000045(n). 14
 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1, 2, 3, 1, 0, 1, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,4 COMMENTS This sequence shows that every sixth Fibonacci number (A134492) is divisible by 4. - Alonso del Arte, Jul 27 2013 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Jon Maiga, Upper bound of Fibonacci entry points, (2019). Index entries for linear recurrences with constant coefficients, signature (1,-1,1,-1,1). FORMULA a(n) = (1/90)*{23*[n mod 6] + 38*[(n+1) mod 6] - 7*[(n+2) mod 6] - 7*[(n+3) mod 6] + 8*[(n+4) mod 6] - 7*[(n+5) mod 6]}. - Paolo P. Lava, May 30 2007 a(n) = 2^(1 - P(3, n) + P(6, n+2))*3^P(6, n+3) - 1, where P(k, n) = floor(1/2*cos(2*n*Pi/k) + 1/2). [Gary Detlefs, May 16 2011] a(n) = 4/3 - cos(Pi*n/3) - sin(Pi*n/3)/sqrt(3) - cos(2*Pi*n/3)/3 + sin(2*Pi*n/3)/sqrt(3). - R. J. Mathar, Oct 08 2011 G.f.: x*(1+2*x^2+x^3) / ( (1-x)*(1-x+x^2)*(1+x+x^2) ). - R. J. Mathar, Jul 14 2012 a(n) = a(n-1) - a(n-2) + a(n-3) - a(n-4) + a(n-5) for n>4. - Wesley Ivan Hurt, Jun 20 2016 E.g.f.: 2*(2*exp(x) - sqrt(3)*sin(sqrt(3)*x/2)*sinh(x/2) - cos(sqrt(3)*x/2)*(sinh(x/2) + 2*cosh(x/2)))/3. - Ilya Gutkovskiy, Jun 20 2016 EXAMPLE a(5) = F(5) mod 4 = 5 mod 4 = 1. a(6) = F(6) mod 4 = 8 mod 4 = 0. a(7) = F(7) mod 4 = 13 mod 4 = 1. MAPLE A079343:=n->[0, 1, 1, 2, 3, 1][(n mod 6)+1]: seq(A079343(n), n=0..100); # Wesley Ivan Hurt, Jun 20 2016 MATHEMATICA PadLeft[{}, 108, {0, 1, 1, 2, 3, 1}] (* Harvey P. Dale, Aug 10 2011 *) Table[Mod[Fibonacci[n], 4], {n, 0, 127}] (* Alonso del Arte, Jul 27 2013 *) LinearRecurrence[{1, -1, 1, -1, 1}, {0, 1, 1, 2, 3}, 105] (* Ray Chandler, Aug 27 2015 *) PROG (PARI) for (n=0, 100, print1(fibonacci(n)%4", ")) (MAGMA) [Fibonacci(n) mod 4: n in [0..100]]; // Vincenzo Librandi, Feb 04 2014 CROSSREFS Cf. A000045, A079344, A079345, A134492. Sequence in context: A321932 A321933 A030373 * A004566 A321896 A321897 Adjacent sequences:  A079340 A079341 A079342 * A079344 A079345 A079346 KEYWORD nonn,easy AUTHOR Jon Perry, Jan 04 2003 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified December 13 03:41 EST 2019. Contains 329968 sequences. (Running on oeis4.)