login
A349234
Numbers k such that k and k+3 are consecutive cubefree numbers.
3
79, 134, 295, 342, 350, 374, 511, 566, 623, 727, 782, 943, 998, 1159, 1214, 1430, 1591, 1623, 1646, 1807, 1862, 2023, 2078, 2239, 2294, 2374, 2399, 2455, 2510, 2623, 2671, 2726, 2887, 2942, 3086, 3103, 3158, 3319, 3374, 3428, 3535, 3590, 3623, 3751, 3806, 3967
OFFSET
1,1
COMMENTS
The asymptotic density of this sequence is 0.0123046264590258... (Mossinghoff et al., 2021).
LINKS
Michael J. Mossinghoff, Tomás Oliveira e Silva, and Tim Trudgian, The distribution of k-free numbers, Mathematics of Computation, Vol. 90, No. 328 (2021), pp. 907-929; arXiv preprint, arXiv:1912.04972 [math.NT], 2019-2020.
EXAMPLE
79 is a term since 79 and 79 + 3 = 82 = 2*41 are cubefree, and 79 + 1 = 80 = 2^4*5 and 79 + 2 = 81 = 3^4 are not.
MATHEMATICA
cubeFreeQ[n_] := AllTrue[FactorInteger[n][[;; , 2]], # < 3 &]; Select[Range[4000], Boole[cubeFreeQ /@ (# + Range[0, 3])] == {1, 0, 0, 1} &]
SequencePosition[Table[If[Max[FactorInteger[n][[All, 2]]]<3, 1, 0], {n, 4000}], {1, 0, 0, 1}][[All, 1]] (* Harvey P. Dale, May 08 2022 *)
CROSSREFS
KEYWORD
nonn
AUTHOR
Amiram Eldar, Nov 11 2021
STATUS
approved