login
The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A132062 Sheffer triangle (1,1-sqrt(1-2*x)). Extended Bessel triangle A001497. 8
1, 0, 1, 0, 1, 1, 0, 3, 3, 1, 0, 15, 15, 6, 1, 0, 105, 105, 45, 10, 1, 0, 945, 945, 420, 105, 15, 1, 0, 10395, 10395, 4725, 1260, 210, 21, 1, 0, 135135, 135135, 62370, 17325, 3150, 378, 28, 1, 0, 2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1, 0 (list; table; graph; refs; listen; history; text; internal format)
OFFSET

0,8

COMMENTS

This is a Jabotinsky type exponential convolution triangle related to A001147 (double factorials). For Jabotinsky type triangles See the D. E. Knuth reference given under A039692.

The subtriangle (n>=m>=1) is A001497(n,m) (Bessel).

For the combinatorial interpretation in terms of unordered forests of increasing plane trees see the W. Lang comment and example under A001497.

This is a special type of Sheffer triangle. See the S. Roman reference given under A048854 (the notation here differs).

This triangle (or the A001497 subtriangle) appears as generalized Stirling numbers of the second kind, S2p(-1,n,m):=S2(-k;m,m)*(-1)^(n-m) for k=1, eqs. (27)-(29) of the W. Lang reference.

Also the Bell transform of the double factorial of odd numbers A001147. For the Bell transform of the double factorial of even numbers A000165 see A039683. For the definition of the Bell transform see A264428. - Peter Luschny, Dec 20 2015

REFERENCES

Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From N. J. A. Sloane, Sep 15 2012

Steven Roman, The Umbral Calculus, Pure and Applied Mathematics, 111, Academic Press, 1984. (p. 78)  [Emanuele Munarini, Oct 10 2017]

LINKS

Table of n, a(n) for n=0..55.

Leonard Carlitz, A Note on the Bessel Polynomials, Duke Math. J. 24 (2) (1957), 151-162. [Emanuele Munarini, Oct 10 2017]

H. Han, S. Seo, Combinatorial proofs of inverse relations and log-concavity for Bessel numbers, Eur. J. Combinat. 29 (7) (2008) 1544-1554. [From R. J. Mathar, Mar 20 2009]

W. Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.

W. Lang, First 10 rows.

FORMULA

a(n,m)=0 if n<m; a(n,0)=1 if n=1, else 0; a(n,m)=(2*(n-1)-m)*a(n-1,m) + a(n-1,m-1).

E.g.f. m-th column ((x*f2p(1;x))^m)/m!, m>=0. with f2p(1;x):=1-sqrt(1-2*x)= x*c(x/2) with the o.g.f.of A000108 (Catalan).

From Emanuele Munarini, Oct 10 2017: (Start)

a(n,k) = binomial(2*n-2*k,n-k)*binomial(2*n-k-1,k-1)*(n-k)!/2^(n-k).

The row polynomials p_n(x) (studied by Carlitz) satisfy the recurrence: p_{n+2}(x) - (2*n+1)*p_{n+1}(x) - x^2*p_n(x) = 0. (End)

EXAMPLE

[1]

[0,      1]

[0,      1,      1]

[0,      3,      3,     1]

[0,     15,     15,     6,     1]

[0,    105,    105,    45,    10,    1]

[0,    945,    945,   420,   105,   15,   1]

[0,  10395,  10395,  4725,  1260,  210,  21,  1]

[0, 135135, 135135, 62370, 17325, 3150, 378, 28, 1]

MAPLE

# The function BellMatrix is defined in A264428.

BellMatrix(n -> doublefactorial(2*n-1), 9); # Peter Luschny, Jan 27 2016

MATHEMATICA

Table[If[k <= n, Binomial[2n-2k, n-k] Binomial[2n-k-1, k-1] (n-k)!/2^(n-k), 0], {n, 0, 6}, {k, 0, n}] // Flatten (* Emanuele Munarini, Oct 10 2017 *)

BellMatrix[f_Function, len_] := With[{t = Array[f, len, 0]}, Table[BellY[n, k, t], {n, 0, len - 1}, {k, 0, len - 1}]];

rows = 10;

M = BellMatrix[(2#-1)!!&, rows];

Table[M[[n, k]], {n, 1, rows}, {k, 1, n}] // Flatten (* Jean-Fran├žois Alcover, Jun 23 2018, after Peter Luschny *)

PROG

(Sage) # uses[bell_transform from A264428]

def A132062_row(n):

    a = sloane.A001147

    dblfact = a.list(n)

    return bell_transform(n, dblfact)

[A132062_row(n) for n in (0..9)] # Peter Luschny, Dec 20 2015

CROSSREFS

Columns m=1: A001147.

Row sums give [1, A001515]. Alternating row sums give [1, -A000806].

Cf. A122850. - R. J. Mathar, Mar 20 2009

Cf. A039683, A264428.

Sequence in context: A184962 A264436 A122850 * A065547 A143333 A283798

Adjacent sequences:  A132059 A132060 A132061 * A132063 A132064 A132065

KEYWORD

nonn,easy,tabl

AUTHOR

Wolfdieter Lang Sep 14 2007

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified April 22 14:20 EDT 2021. Contains 343177 sequences. (Running on oeis4.)