The OEIS is supported by the many generous donors to the OEIS Foundation. Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A006156 Number of ternary squarefree words of length n. (Formerly M2550) 18
 1, 3, 6, 12, 18, 30, 42, 60, 78, 108, 144, 204, 264, 342, 456, 618, 798, 1044, 1392, 1830, 2388, 3180, 4146, 5418, 7032, 9198, 11892, 15486, 20220, 26424, 34422, 44862, 58446, 76122, 99276, 129516, 168546, 219516, 285750, 372204, 484446, 630666, 821154 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS a(n), n > 0, is a multiple of 3 by symmetry. - Michael S. Branicky, Jul 21 2021 REFERENCES N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Hans Havermann, Table of n, a(n) for n = 0..110 [Terms 1-90 come from The Entropy of Square-Free Words by Baake, Elser, & Grimm (pages 10, 11). Terms 91-110 come from Grimm's Improved Bounds on the Number of Ternary Square-Free Words (page 3).] M. Baake, V. Elser and U. Grimm, The entropy of square-free words, arXiv:math-ph/9809010, 1998. Jean Berstel, Some recent results on squarefree words, STACS 84, Symposium of Theoretical Aspects of Computer Science Paris, 11-13, 1984, pp 14-25. F.-J. Brandenburg, Uniformly growing k-th power-free homomorphisms, Theoretical Computer Sci., 23 (1983), 69-82. J. Brinkhuis, Non-repetitive sequences on three symbols, Quart. J. Math. Oxford, 34 (1983), 145-149. S. Ekhad and D. Zeilberger, There are more than 2^(n/17) n-letter ternary square-free words, J. Integer Sequences, Vol. 1 (1998), Article 98.1.9. U. Grimm, Improved bounds on the number of ternary square-free words, J. Integer Sequences, Vol. 4 (2001), Article 01.2.7. Mari Huova, Combinatorics on Words. New Aspects on Avoidability, Defect Effect, Equations and Palindromes, Turku Centre for Computer Science, TUCS Dissertations No 172, April 2014. Mari Huova and Juhani Karhumäki, On Unavoidability of k-abelian Squares in Pure Morphic Words, Journal of Integer Sequences, Vol. 16 (2013), #13.2.9. R. Kolpakov, Efficient Lower Bounds on the Number of Repetition-free Words, J. Integer Sequences, Vol. 10 (2007), Article 07.3.2. Vladislav Makarov, Counting ternary square-free words quickly, arXiv:2012.03926 [cs.FL], 2020. J. Noonan and D. Zeilberger, The Goulden-Jackson cluster method: extensions, applications and implementations, arXiv:math/9806036 [math.CO], 1998. C. Richard and U. Grimm, On the entropy and letter frequencies of ternary square-free words, arXiv:math/0302302 [math.CO], 2003. A. M. Shur, Growth properties of power-free languages, Computer Science Review, Vol. 6 (2012), 187-208. A. M. Shur, Numerical values of the growth rates of power-free languages, arXiv:1009.4415 [cs.FL], 2010. Yuriy Tarannikov, The minimal density of a letter in an infinite ternary square-free word is 0.2746..., Journal of Integer Sequences, Vol. 5 (2002), Article 02.2.2. Eric Weisstein's World of Mathematics, Squarefree Word FORMULA a(n) >= 2^(n/17), see Zeilberger. Let L = lim_{n->infinity} a(n)^(1/n); then L exists and Grimm proves 1.109999 < L < 1.317278. - Charles R Greathouse IV, Nov 29 2013 L exists since a(n) is submultiplicative; 1.3017597 < L < 1.3017619 (Shur 2012); the gap between the bounds can be made less than any given constant. - Arseny Shur, Apr 22 2015 EXAMPLE Let the alphabet be {a,b,c}. Then: a(1)=3: a, b, c. a(2)=6: all xy except aa, bb, cc. a(3)=12: aba, abc, aca, acb and similar words beginning with b and c, for a total of 12. MATHEMATICA (* A simple solution (though not at all efficient beyond n = 12) : *) a = 1; a[n_] := a[n] = Length @ DeleteCases[Tuples[Range, n] , {a___, b__, b__, c___} ]; s = {}; Do[Print["a[", n, "] = ", a[n]]; AppendTo[s, a[n]], {n, 0, 12}]; s (* Jean-François Alcover, May 02 2011 *) Length/@NestList[DeleteCases[Flatten[Outer[Append, #, Range@3, 1], 1], {___, x__, x__, ___}] &, {{}}, 20] (* Vladimir Reshetnikov, May 16 2016 *) PROG (Python) def isf(s): # incrementally squarefree (check factors ending in last letter)     for l in range(1, len(s)//2 + 1):         if s[-2*l:-l] == s[-l:]: return False     return True def aupton(nn, verbose=False):     alst, sfs = , set("0")     for n in range(1, nn+1):         an = 3*len(sfs)         sfsnew = set(s+i for s in sfs for i in "012" if isf(s+i))         alst, sfs = alst+[an], sfsnew         if verbose: print(n, an)     return alst print(aupton(40)) # Michael S. Branicky, Jul 21 2021 CROSSREFS Cf. A060688, A282212. Second column of A215075, multiplied by 3!=6. Sequence in context: A180005 A116958 A242477 * A171370 A061776 A356020 Adjacent sequences:  A006153 A006154 A006155 * A006157 A006158 A006159 KEYWORD nonn,nice AUTHOR EXTENSIONS Links corrected by Eric Rowland, Sep 16 2010 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified September 26 00:53 EDT 2022. Contains 356986 sequences. (Running on oeis4.)