login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A007047 Number of chains in power set of n-set.
(Formerly M2903)
30
1, 3, 11, 51, 299, 2163, 18731, 189171, 2183339, 28349043, 408990251, 6490530291, 112366270379, 2107433393523, 42565371881771, 921132763911411, 21262618727925419, 521483068116543603, 13542138653027381291, 371206349277313644531 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,2

COMMENTS

Stirling transform of A052849(n-1) = [1,2,4,12,48,...] is a(n-1) =[1,3,11,51,299,...]. - Michael Somos, Mar 04 2004

It is interesting to note that a chain in the power set of a set X can be thought of as a fuzzy subset of X and conversely. Chains originating with empty set are fuzzy subsets with empty core and those chains not ending with the whole set are with support strictly contained in X. - Venkat Murali (v.murali(AT)ru.ac.za), May 18 2005

Equals the binomial transform of A000629: (1, 2, 6, 26, 150, 1082, ...) and the double binomial transform of A000670: (1, 1, 3, 13, 75, 541, ...). - Gary W. Adamson, Aug 04 2009

Row sums of A038719. - Peter Bala, Jul 09 2014

Also the number of restricted barred preferential arrangements of an n-set having two bars, where one fixed section is a free section and the other two sections are restricted sections. - Sithembele Nkonkobe, Jun 16 2015

REFERENCES

V. Murali, Counting fuzzy subsets of a finite set, preprint, Rhodes University, Grahamstown 6140, South Africa, 2003.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Alois P. Heinz, Table of n, a(n) for n = 0..424 (first 101 terms from T. D. Noe)

P. Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.

Lisa Berry, Stefan Forcey, Maria Ronco, and Patrick Showers, Species substitution, graph suspension, and graded hopf algebras of painted tree polytopes.

Jun Ma, S.-M. Ma, and Y.-N. Yeh, Recurrence relations for binomial-Eulerian polynomials, arXiv preprint arXiv:1711.09016 [math.CO], 2017.

T. Manneville and V. Pilaud, Compatibility fans for graphical nested complexes, arXiv preprint arXiv:1501.07152 [math.CO], 2015-2016.

Rajesh Kumar Mohapatra and Tzung-Pei Hong, On the Number of Finite Fuzzy Subsets with Analysis of Integer Sequences, Mathematics (2022) Vol. 10, No. 7, 1161.

V. Murali, Number of fuzzy subsets of a finite set, fuzzy systems research group, Universities of Rhodes and Fort Hare. [broken link]

V. Murali and B. B. Makamba, Finite Fuzzy Sets, International Journal of General Systems, Vol. 34, No. 1 (2005), pp. 61-75.

R. B. Nelsen, Letter to N. J. A. Sloane, Aug. 1991

R. B. Nelsen and H. Schmidt, Jr., Chains in power sets, Math. Mag., 64 (1991), 23-31.

S. Nkonkobe and V. Murali, A study of a family of generating functions of Nelsen-Schmidt type and some identities on restricted barred preferential arrangements, arXiv:1503.06172 [math.CO], Apr 2015.

Index entries for sequences related to posets

FORMULA

E.g.f.: exp(2*x)/(2-exp(x)).

a(n) = Sum_{k>=1} (k+1)^n/2^k = 2*A000629(n)-1. - Benoit Cloitre, Sep 08 2002

a(n) = one less than sum of quotients with numerator 4 times (n!)((k_1 + k_2 + ... + k_n)!) and with denominator (k_1!k_2!...k_n!)(1!^k_1 2!^k_2...n!^k_n) where the sum is taken over all partitions 1*k_1 + 2*k_2 + ... + n*k_n = n. E.g. a(1) = 3 because the membership value of x to {x} is either 1, alpha with 0 < alpha < 1 or 0. a(2) = 11 since the membership values x and y to {x, y} are 1 >= alpha >= beta >= 0 for {empty set, x, y} in that order or {empty set, y, x} exercising all possible > or = . - Venkat Murali (v.murali(AT)ru.ac.za), May 18 2005

G.f.: 1/Q(0), where Q(k) = 1 - 3*x*(k+1) - 2*x^2*(k+1)*(k+1)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 02 2013

a(n) ~ 2*n! / (log(2))^(n+1). - Vaclav Kotesovec, Sep 27 2017

a(n) = 4 * A000670(n) - 1 for n > 0. - Alois P. Heinz, Feb 07 2020

a(n) = -(-1)^n Phi(2,-n,-1), where Phi(z,s,a) is the Lerch Zeta function. - Federico Provvedi, Sep 05 2020

a(n) = 1 + 2 * Sum_{k=0..n-1} (-1)^(n-k-1) * binomial(n,k) * a(k). - Ilya Gutkovskiy, Apr 28 2021

MAPLE

P := proc(n, x) option remember; if n = 0 then 1 else

(n*x+2*(1-x))*P(n-1, x)+x*(1-x)*diff(P(n-1, x), x);

expand(%) fi end:

A007047 := n -> 2^n*subs(x=1/2, P(n, x)):

seq(A007047(n), n=0..19); # Peter Luschny, Mar 07 2014

# second Maple program:

b:= proc(n) option remember; `if`(n=0, 4,

add(b(n-j)*binomial(n, j), j=1..n))

end:

a:= n-> `if`(n=0, 1, b(n)-1):

seq(a(n), n=0..21); # Alois P. Heinz, Feb 07 2020

MATHEMATICA

Table[LerchPhi[1/2, -n, 2]/2, {n, 0, 10}] (* Vladimir Reshetnikov, Feb 16 2011 *)

Table[2*PolyLog[-n, 1/2] - 1 , {n, 0, 19}] (* Jean-François Alcover, Aug 14 2013 *)

With[{nn=20}, CoefficientList[Series[Exp[2x]/(2-Exp[x]), {x, 0, nn}], x] Range[ 0, nn]!] (* Harvey P. Dale, Dec 08 2015 *)

Table[-(-1)^k HurwitzLerchPhi[2, -k, -1], {k, 0, 30}] (* Federico Provvedi, Sep 05 2020 *)

PROG

(PARI) a(n)=if(n<0, 0, n!*polcoeff(subst((y+1)^2/(1-y), y, exp(x+x*O(x^n))-1), n));

(PARI) x='x+O('x^66); Vec(serlaplace(exp(2*x)/(2-exp(x)))) \\ Joerg Arndt, Aug 14 2013

(Haskell)

a007047 = sum . a038719_row -- Reinhard Zumkeller, Feb 05 2014

CROSSREFS

Cf. A000629, A000629, A000670. Row sums of A038719.

Sequence in context: A113712 A056199 A230008 * A182176 A244754 A129097

Adjacent sequences: A007044 A007045 A007046 * A007048 A007049 A007050

KEYWORD

nonn,nice,easy

AUTHOR

N. J. A. Sloane, Roger B. Nelsen

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified February 5 18:38 EST 2023. Contains 360087 sequences. (Running on oeis4.)