OFFSET
0,4
COMMENTS
The (reverse) Bessel polynomials P(n,x):=Sum_{m=0..n} a(n,m)*x^m, the row polynomials, called Theta_n(x) in the Grosswald reference, solve x*(d^2/dx^2)P(n,x) - 2*(x+n)*(d/dx)P(n,x) + 2*n*P(n,x) = 0.
With the related Sheffer associated polynomials defined by Carlitz as
B(0,x) = 1
B(1,x) = x
B(2,x) = x + x^2
B(3,x) = 3 x + 3 x^2 + x^3
B(4,x) = 15 x + 15 x^2 + 6 x^3 + x^4
... (see Mathworld reference), then P(n,x) = 2^n * B(n,x/2) are the Sheffer polynomials described in A119274. - Tom Copeland, Feb 10 2008
Exponential Riordan array [1/sqrt(1-2x), 1-sqrt(1-2x)]. - Paul Barry, Jul 27 2010
From Vladimir Kruchinin, Mar 18 2011: (Start)
For B(n,k){...} the Bell polynomial of the second kind we have
B(n,k){f', f'', f''', ...} = T(n-1,k-1)*(1-2*x)^(k/2-n), where f(x) = 1-sqrt(1-2*x).
The expansions of the first few rows are:
1/sqrt(1-2*x);
1/(1-2*x)^(3/2), 1/(1-2*x);
3/(1-2*x)^(5/2), 3/(1-2*x)^2, 1/(1-2*x)^(3/2);
15/(1-2*x)^(7/2), 15/(1-2*x)^3, 6/(1-2*x)^(5/2), 1/(1-2*x)^2. (End)
Also the Bell transform of A001147 (whithout column 0 which is 1,0,0,...). For the definition of the Bell transform see A264428. - Peter Luschny, Jan 19 2016
Antidiagonals of A099174 are rows of this entry. Dividing each diagonal by its first element generates A054142. - Tom Copeland, Oct 04 2016
The row polynomials p_n(x) of A107102 are (-1)^n B_n(1-x), where B_n(x) are the modified Carlitz-Bessel polynomials above, e.g., (-1)^2 B_2(1-x) = (1-x) + (1-x)^2 = 2 - 3 x + x^2 = p_2(x). - Tom Copeland, Oct 10 2016
a(n-1,m-1) counts rooted unordered binary forests with n labeled leaves and m roots. - David desJardins, Feb 23 2019
From Jianing Song, Nov 29 2021: (Start)
The polynomials P_n(x) = Sum_{k=0..n} T(n,k)*x^k satisfy: P_n(x) - (d/dx)P_n(x) = x*P_{n-1}(x) for n >= 1.
{P(n,x)} are related to the Fourier transform of 1/(1+x^2)^(n+1) and x/(1+x^2)^(n+2):
(i) For n >= 0, real number t, we have Integral_{x=-oo..oo} exp(-i*t*x)/(1+x^2)^(n+1) dx = Pi/(2^n*n!) * P_n(|t|) * exp(-|t|);
(ii) For n >= 0, real number t, we have Integral_{x=-oo..oo} x*exp(-i*t*x)/(1+x^2)^(n+2) dx = Pi/(2^(n+1)*(n+1)!) * ((-t)*P_n(-|t|)) * exp(-|t|). (End)
Suppose that f(x) is an n-times differentiable function defined on (a,b) for 0 <= a < b <= +oo, then for n >= 1, the n-th derivative of f(sqrt(x)) on (a^2,b^2) is Sum_{k=1..n} ((-1)^(n-k)*T(n-1,k-1)*f^(k)(sqrt(x))) / (2^n*x^(n-(k/2))), where f^(k) is the k-th derivative of f. - Jianing Song, Nov 30 2023
REFERENCES
J. Riordan, Combinatorial Identities, Wiley, 1968, p. 77.
LINKS
T. D. Noe, Rows n = 0..50 of triangle, flattened
Peter Bala, Generalized Dobinski formulas
Paul Barry, Riordan Arrays, Orthogonal Polynomials as Moments, and Hankel Transforms, J. Int. Seq. 14 (2011) # 11.2.2, chapter 8.
E. Deutsch, L. Ferrari and S. Rinaldi, Production Matrices, Advances in Applied Mathematics, 34 (2005) pp. 101-122.
O. Frink and H. L. Krall, A new class of orthogonal polynomials, Trans. Amer. Math. Soc. 65,100-115, 1945. [From Roger L. Bagula, Feb 15 2009]
E. Grosswald, Bessel Polynomials, Lecture Notes Math. vol. 698 1978 p. 18.
Milan Janjic, Some classes of numbers and derivatives, JIS 12 (2009) #09.8.3.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), #00.2.4.
B. Leclerc, Powers of staircase Schur functions and symmetric analogues of Bessel polynomials, Discrete Math., 153 (1996), 213-227.
Robert S. Maier, Boson Operator Ordering Identities from Generalized Stirling and Eulerian Numbers, arXiv:2308.10332 [math.CO], 2023. See p. 19.
Toufik Mansour, Matthias Schork and Mark Shattuck, The Generalized Stirling and Bell Numbers Revisited, Journal of Integer Sequences, Vol. 15 (2012), #12.8.3.
Toufik Mansour, Matthias Schork and Mark Shattuck, On the Stirling numbers associated with the meromorphic Weyl algebra, Applied Mathematics Letters, Volume 25, Issue 11, November 2012, Pages 1767-1771. - From N. J. A. Sloane, Sep 15 2012
W. Mlotkowski and A. Romanowicz, A family of sequences of binomial type, Probability and Mathematical Statistics, Vol. 33, Fasc. 2 (2013), pp. 401-408.
Mathias Pétréolle and Alan D. Sokal, Lattice paths and branched continued fractions. II. Multivariate Lah polynomials and Lah symmetric functions, arXiv:1907.02645 [math.CO], 2019.
Feng Qi and Bai-Ni Guo, "Some Properties and Generalizations of the Catalan, Fuss, and Fuss-Catalan Numbers", Mathematical Analysis and Applications : Selected Topics (2018), Wiley, Ch. 5, 101-133.
Feng Qi, X.-T. Shi and F.-F. Liu, Several formulas for special values of the Bell polynomials of the second kind and applications, Preprint 2015.
Alexander Stoimenow, On the number of chord diagrams, Discr. Math. 218 (2000), 209-233. Lemma 2.2.
Eric Weisstein's World of Mathematics, Bessel Polynomial
FORMULA
a(n, m) = (2*n-m)!/(m!*(n-m)!*2^(n-m)) if n >= m >= 0 else 0 (from Grosswald, p. 7).
a(n, m)= 0, n<m; a(n, -1) := 0; a(0, 0)= 1; a(n, m) = (2*n-m-1)*a(n-1, m) + a(n-1, m-1), n >= m >= 0 (from Grosswald p. 23, (19)).
E.g.f. for m-th column: ((1-sqrt(1-2*x))^m)/(m!*sqrt(1-2*x)).
G.f.: 1/(1-xy-x/(1-xy-2x/(1-xy-3x/(1-xy-4x/(1-.... (continued fraction). - Paul Barry, Jan 29 2009
T(n,k) = if(k<=n, C(2n-k,2(n-k))*(2(n-k)-1)!!,0) = if(k<=n, C(2n-k,2(n-k))*A001147(n-k),0). - Paul Barry, Mar 18 2011
Row polynomials for n>=1 are given by 1/t*D^n(exp(x*t)) evaluated at x = 0, where D is the operator 1/(1-x)*d/dx. - Peter Bala, Nov 25 2011
The matrix product A039683*A008277 gives a signed version of this triangle. Dobinski-type formula for the row polynomials: R(n,x) = (-1)^n*exp(x)*Sum_{k = 0..inf} k*(k-2)*(k-4)*...*(k-2*(n-1))*(-x)^k/k!. Cf. A122850. - Peter Bala, Jun 23 2014
EXAMPLE
Triangle begins
1,
1, 1,
3, 3, 1,
15, 15, 6, 1,
105, 105, 45, 10, 1,
945, 945, 420, 105, 15, 1,
10395, 10395, 4725, 1260, 210, 21, 1,
135135, 135135, 62370, 17325, 3150, 378, 28, 1,
2027025, 2027025, 945945, 270270, 51975, 6930, 630, 36, 1
Production matrix begins
1, 1,
2, 2, 1,
6, 6, 3, 1,
24, 24, 12, 4, 1,
120, 120, 60, 20, 5, 1,
720, 720, 360, 120, 30, 6, 1,
5040, 5040, 2520, 840, 210, 42, 7, 1,
40320, 40320, 20160, 6720, 1680, 336, 56, 8, 1,
362880, 362880, 181440, 60480, 15120, 3024, 504, 72, 9, 1
This is the exponential Riordan array A094587, or [1/(1-x),x], beheaded.
- Paul Barry, Mar 18 2011
MAPLE
f := proc(n) option remember; if n <=1 then (1+x)^n else expand((2*n-1)*x*f(n-1)+f(n-2)); fi; end;
row := n -> seq(coeff(f(n), x, n - k), k = 0..n): seq(row(n), n = 0..9);
MATHEMATICA
m = 9; Flatten[ Table[(n + k)!/(2^k*k!*(n - k)!), {n, 0, m}, {k, n, 0, -1}]] (* Jean-François Alcover, Sep 20 2011 *)
y[n_, x_] := Sqrt[2/(Pi*x)]*E^(1/x)*BesselK[-n-1/2, 1/x]; t[n_, k_] := Coefficient[y[n, x], x, k]; Table[t[n, k], {n, 0, 9}, {k, n, 0, -1}] // Flatten (* Jean-François Alcover, Mar 01 2013 *)
PROG
(PARI) T(k, n) = if(n>k||k<0||n<0, 0, (2*k-n)!/(n!*(k-n)!*2^(k-n))) /* Ralf Stephan */
(PARI) {T(n, k) = if( k<0 || k>n, 0, binomial(n, k)*(2*n-k)!/2^(n-k)/n!)}; /* Michael Somos, Oct 03 2006 */
(Haskell)
a001497 n k = a001497_tabl !! n !! k
a001497_row n = a001497_tabl !! n
a001497_tabl = [1] : f [1] 1 where
f xs z = ys : f ys (z + 2) where
ys = zipWith (+) ([0] ++ xs) (zipWith (*) [z, z-1 ..] (xs ++ [0]))
-- Reinhard Zumkeller, Jul 11 2014
(Magma) /* As triangle */ [[Factorial(2*n-k)/(Factorial(k)*Factorial(n-k)*2^(n-k)): k in [0..n]]: n in [0.. 15]]; // Vincenzo Librandi, Aug 12 2015
(Sage) # uses[bell_matrix from A264428]
# Adds a column 1, 0, 0, 0, ... at the left side of the triangle.
bell_matrix(lambda n: A001147(n), 9) # Peter Luschny, Jan 19 2016
CROSSREFS
KEYWORD
AUTHOR
STATUS
approved