login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A213652
9-nomial coefficient array: Coefficients of the polynomial (1+...+X^8)^n, n=0,1,...
6
1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 28, 36, 45, 52, 57, 60, 61, 60, 57, 52, 45, 36, 28, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 84, 120, 165, 216, 270, 324, 375, 420, 456, 480, 489, 480, 456
OFFSET
0,12
COMMENTS
The n-th row also yields the number of ways to get a total of n, n+1,..., 9n, when summing n integers ranging from 1 to 9.
The row sums equal 9^n = A001019(n).
The row lengths are 1+8n = A017077(n).
LINKS
Seiichi Manyama, Rows n = 0..49, flattened
FORMULA
T(n,k) = Sum_{i=0..floor(k/9)} (-1)^i*binomial(n,i)*binomial(n+k-1-9*i,n-1) for n >= 0 and 0 <= k <= 8*n. - Peter Bala, Sep 07 2013
EXAMPLE
The triangle starts:
(row n=0) 1; (row sum = 1, row length = 1)
(row n=1) 1,1,1,1,1,1,1,1,1; (row sum = 9, row length = 9)
(row n=2) 1,2,3,4,5,6,7,8,9,8,7,6,5,4,3,2,1; (sum = 81, length = 17)
(row n=3) 1,3,6,10,15,21,28,36,45,52,57,60,61,60,... (sum = 729, length = 25)
(row n=4) 1, 4, 10, 20, 35, 56, 84, 120, 165, 216, 270, 324, 375, 420, 456,... (sum = 9^4; length = 33),
etc.
MAPLE
#Define the r-nomial coefficients for r = 1, 2, 3, ...
rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):
#Display the 9-nomials as a table
r := 9: rows := 10:
for n from 0 to rows do
seq(rnomial(r, n, k), k = 0..(r-1)*n)
end do; # Peter Bala, Sep 07 2013
PROG
(PARI) concat(vector(5, k, Vec(sum(j=0, 8, x^j)^(k-1))))
CROSSREFS
The q-nomial arrays are for q=2..10: A007318 (Pascal), A027907, A008287, A035343, A063260, A063265, A171890, A213652, A213651.
Sequence in context: A081598 A232360 A158289 * A262734 A287794 A179987
KEYWORD
nonn,tabf
AUTHOR
M. F. Hasler, Jun 17 2012
STATUS
approved