login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A063260 Sextinomial (also called hexanomial) coefficient array. 20
1, 1, 1, 1, 1, 1, 1, 1, 2, 3, 4, 5, 6, 5, 4, 3, 2, 1, 1, 3, 6, 10, 15, 21, 25, 27, 27, 25, 21, 15, 10, 6, 3, 1, 1, 4, 10, 20, 35, 56, 80, 104, 125, 140, 146, 140, 125, 104, 80, 56, 35, 20, 10, 4, 1, 1, 5, 15, 35, 70, 126, 205, 305, 420, 540, 651, 735, 780 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,9

COMMENTS

The sequence of step width of this staircase array is [1,5,5,...], hence the degree sequence for the row polynomials is [0,5,10,15,...]=A008587.

The column sequences (without leading zeros) are for k=0..5 those of the lower triangular array A007318 (Pascal) and for k=6..9: A062989, A063262-4. Row sums give A000400 (powers of 6). Central coefficients give A063419; see also A018901.

This can be used to calculate the number of occurrences of a given roll of n six-sided dice, where k is the index: k=0 being the lowest possible roll (i.e., n) and n*6 being the highest roll.

REFERENCES

L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78.

LINKS

T. D. Noe, Rows n = 0..25, flattened

S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle, arXiv:0802.2654 [math.NT], 2008.

FORMULA

G.f. for row n: (Sum_{j=0..5} x^j)^n.

G.f. for column k: (x^(ceiling(k/5)))*N6(k, x)/(1-x)^(k+1) with the row polynomials from the staircase array A063261(k, m) and with N6(6,x) = 5 - 10*x + 10*x^2 - 5*x^3 + x^4.

a(n, k)=0 if n=-1 or k<0 or k >= 5*n + 1; a(0, 0)=1; a(n, k)= Sum_{j=0..5} a(n-1, k-j) else.

T(n, k) = Sum_{i = 0..floor(k/6)} (-1)^i*binomial(n,i)*binomial(n+k-1-6*i,n-1) for n >= 0 and 0 <= k <= 5*n. - Peter Bala, Sep 07 2013

T(n, k) = Sum_{i = max(0,ceiling((k-2*n)/3)).. min(n,k/3)} binomial(n,i)*trinomial(n,k-3*i) for n >= 0 and 0 <= k <= 5*n. - Matthew Monaghan, Sep 30 2015

EXAMPLE

The irregular table T(n, k) begins:

n\k 0 1 2  3  4  5  6  7  8  9 10 11 12 13 14 15

1:  1

2:  1 1 1  1  1  1

3:  1 2 3  4  5  6  5  4  3  2  1

4:  1 3 6 10 15 21 25 27 27 25 21 15 10  6  3  1

...reformatted - Wolfdieter Lang, Oct 31 2015

MAPLE

#Define the r-nomial coefficients for r = 1, 2, 3, ...

rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):

#Display the 6-nomials as a table

r := 6:  rows := 10:

for n from 0 to rows do

seq(rnomial(r, n, k), k = 0..(r-1)*n)

end do;

# Peter Bala, Sep 07 2013

MATHEMATICA

Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *)

PROG

(PARI) concat(vector(5, k, Vec(sum(j=0, 5, x^j)^k)))  \\ M. F. Hasler, Jun 17 2012

CROSSREFS

The q-nomial arrays for q=2..5 are: A007318 (Pascal), A027907, A008287, A035343 and for q=7: A063265, A171890, A213652, A213651.

Sequence in context: A122416 A134665 A271832 * A271859 A232240 A073793

Adjacent sequences:  A063257 A063258 A063259 * A063261 A063262 A063263

KEYWORD

nonn,easy,tabf

AUTHOR

Wolfdieter Lang, Jul 24 2001

EXTENSIONS

More terms and corrected recurrence from Nicholas M. Makin (NickDMax(AT)yahoo.com), Sep 13 2002

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified March 24 06:12 EDT 2017. Contains 283984 sequences.