OFFSET
0,10
COMMENTS
The sequence of step width of this staircase array is [1,6,6,...], hence the degree sequence for the row polynomials is [0,6,12,18,...]= A008588.
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, pp. 77,78.
LINKS
T. D. Noe, Rows n = 0..25, flattened
S. R. Finch, P. Sebah and Z.-Q. Bai, Odd Entries in Pascal's Trinomial Triangle (arXiv:0802.2654)
FORMULA
a(n, k)=0 if n=-1 or k<0 or k >= 6*n; a(0, 0)=1; a(n, k)= sum(a(n-1, k-j), j=0..6) else.
G.f. for row n: (sum(x^j, j=0..6))^n.
G.f. for column k: (x^(ceiling(k/6)))*N7(k, x)/(1-x)^(k+1) with the row polynomials of the staircase array A063266(k, m).
T(n,k) = sum {i = 0..floor(k/7)} (-1)^i*binomial(n,i)*binomial(n+k-1-7*i,n-1) for n >= 0 and 0 <= k <= 6*n. - Peter Bala, Sep 07 2013
EXAMPLE
{1};
{1, 1, 1, 1, 1, 1, 1};
{1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1};
...
N7(k,x)= 1 for k=0..6, N7(7,x)= 6-15*x+20*x^2-15*x^3+6*x^4-x^5 (from A063266).
MAPLE
#Define the r-nomial coefficients for r = 1, 2, 3, ...
rnomial := (r, n, k) -> add((-1)^i*binomial(n, i)*binomial(n+k-1-r*i, n-1), i = 0..floor(k/r)):
#Display the 7-nomials as a table
r := 7: rows := 10:
for n from 0 to rows do
seq(rnomial(r, n, k), k = 0..(r-1)*n)
end do;
# Peter Bala, Sep 07 2013
MATHEMATICA
Flatten[Table[CoefficientList[(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)^n, x], {n, 0, 25}]] (* T. D. Noe, Apr 04 2011 *)
CROSSREFS
KEYWORD
nonn,easy,tabf
AUTHOR
Wolfdieter Lang, Jul 24 2001
STATUS
approved