The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A279313 Period 14 zigzag sequence: repeat [0,1,2,3,4,5,6,7,6,5,4,3,2,1]. 11
 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1, 0, 1 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 LINKS Index entries for linear recurrences with constant coefficients, signature (1,0,0,0,0,0,-1,1). FORMULA G.f.: x*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)/(1 - x + x^7 - x^8). a(n) = a(n-1) - a(n-7) + a(n-8) for n > 7. a(n) = abs(n - 14*round(n/14)). a(n) = Sum_{i=1..n} (-1)^floor((i-1)/7). a(2n) = 2*A279316(n), a(2n+1) = A279321(n). MAPLE A279313:=n->[0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1][(n mod 14)+1]: seq(A279313(n), n=0..200); MATHEMATICA CoefficientList[Series[x*(1 + x + x^2 + x^3 + x^4 + x^5 + x^6)/(1 - x + x^7 - x^8), {x, 0, 100}], x] PROG (MAGMA) &cat[[0, 1, 2, 3, 4, 5, 6, 7, 6, 5, 4, 3, 2, 1]: n in [0..10]]; (PARI) a(n)=([0, 1, 0, 0, 0, 0, 0, 0; 0, 0, 1, 0, 0, 0, 0, 0; 0, 0, 0, 1, 0, 0, 0, 0; 0, 0, 0, 0, 1, 0, 0, 0; 0, 0, 0, 0, 0, 1, 0, 0; 0, 0, 0, 0, 0, 0, 1, 0; 0, 0, 0, 0, 0, 0, 0, 1; 1, -1, 0, 0, 0, 0, 0, 1]^n*[0; 1; 2; 3; 4; 5; 6; 7])[1, 1] \\ Charles R Greathouse IV, Dec 12 2016 CROSSREFS Period k zigzag sequences: A000035 (k=2), A007877 (k=4), A260686 (k=6), A266313 (k=8), A271751 (k=10), A271832 (k=12), this sequence (k=14), A279319 (k=16), A158289 (k=18). Cf. A279316, A279321. Sequence in context: A245355 A307785 A331305 * A063265 A211011 A232242 Adjacent sequences:  A279310 A279311 A279312 * A279314 A279315 A279316 KEYWORD nonn,easy AUTHOR Wesley Ivan Hurt, Dec 09 2016 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified May 25 08:26 EDT 2020. Contains 334585 sequences. (Running on oeis4.)