login
A288342
Expansion of 1 / ((1-x)^2*(1-x^2)*(1-x^3)*...*(1-x^7)).
6
1, 2, 4, 7, 12, 19, 30, 45, 66, 94, 132, 181, 246, 328, 433, 564, 728, 929, 1177, 1477, 1841, 2277, 2799, 3417, 4150, 5010, 6019, 7194, 8561, 10140, 11964, 14057, 16457, 19195, 22315, 25854, 29865, 34391, 39493, 45224, 51654, 58844, 66877, 75823, 85776, 96820
OFFSET
0,2
COMMENTS
Number of partitions of at most n into at most 7 parts.
LINKS
Richard J. Mathar, Size of the Set of Residues of Integer Powers of Fixed Exponent, research paper, 2017.
Index entries for linear recurrences with constant coefficients, signature (2, 0, -1, 0, -1, 1, -1, 0, 1, 1, 0, 1, -2, 0, 0, -2, 1, 0, 1, 1, 0, -1, 1, -1, 0, -1, 0, 2, -1).
PROG
(PARI) x='x+O('x^99); Vec(1/((1-x)*prod(i=1, 7, (1-x^i)))) \\ Altug Alkan, Mar 28 2018
CROSSREFS
Number of partitions of at most n into at most k parts: A002621 (k=4), A002622 (k=5), A288341 (k=6), this sequence (k=7), A288343 (k=8), A288344 (k=9), A288345 (k=10).
Cf. A288254.
Sequence in context: A288341 A347542 A035298 * A347543 A343940 A288343
KEYWORD
nonn,easy
AUTHOR
Seiichi Manyama, Jun 08 2017
STATUS
approved