login
A114324
Number of partitions of n with a product greater than n.
45
1, 0, 0, 0, 0, 1, 3, 6, 10, 16, 26, 39, 56, 79, 111, 150, 200, 265, 349, 453, 586, 749, 957, 1209, 1522, 1903, 2379, 2950, 3654, 4500, 5534, 6771, 8271, 10063, 12228, 14799, 17884, 21543, 25919, 31087, 37233, 44477, 53063, 63149, 75059, 89014, 105436, 124631
OFFSET
0,7
COMMENTS
The Heinz numbers of these partitions are given by A325037. - Gus Wiseman, Mar 27 2019
LINKS
Pankaj Jyoti Mahanta, On the number of partitions of n whose product of the summands is at most n, arXiv:2010.07353 [math.CO], 2020.
EXAMPLE
a(6) = 3 since there are 3 partitions of 6 with product greater than 6: {3,3}, {2,2,2}, {4,2}.
From Gus Wiseman, Mar 27 2019: (Start)
The a(5) = 1 through a(9) = 16 partitions:
(32) (33) (43) (44) (54)
(42) (52) (53) (63)
(222) (322) (62) (72)
(331) (332) (333)
(421) (422) (432)
(2221) (431) (441)
(521) (522)
(2222) (531)
(3221) (621)
(3311) (3222)
(3321)
(4221)
(4311)
(5211)
(22221)
(32211)
(End)
MATHEMATICA
<< DiscreteMath`Combinatorica`; lst=Table[Length@Select[Partitions[n], (Times @@ # > n) &], {n, 50}]
Table[Length[Select[IntegerPartitions[n], Times@@#>n&]], {n, 0, 20}] (* Gus Wiseman, Mar 27 2019 *)
KEYWORD
nonn
AUTHOR
Giovanni Resta, Feb 06 2006
EXTENSIONS
a(0) = 1 prepended by Gus Wiseman, Mar 27 2019
STATUS
approved