login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation to keep the OEIS running. In 2018 we replaced the server with a faster one, added 20000 new sequences, and reached 7000 citations (often saying "discovered thanks to the OEIS").
Other ways to donate

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A005461 Number of simplices in barycentric subdivision of n-simplex.
(Formerly M4985)
8
1, 15, 180, 2100, 25200, 317520, 4233600, 59875200, 898128000, 14270256000, 239740300800, 4249941696000, 79332244992000, 1556132497920000, 32011868528640000, 689322235650048000, 15509750302126080000, 364022962973429760000, 8898339094906060800000 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

REFERENCES

R. Austin, R. K. Guy, and R. Nowakowski, unpublished notes, circa 1987.

R. K. Guy, personal communication.

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

G. C. Greubel, Table of n, a(n) for n = 1..440

R. Austin, R. K. Guy, & R. Nowakowski, Unpublished notes, 1987

Milan Janjic, Enumerative Formulas for Some Functions on Finite Sets

FORMULA

a(n) = n*(n + 1)*(n + 3)!/48.

Essentially Stirling numbers of second kind - see A028246.

If we define f(n,i,x) = Sum_{k=i..n} Sum_{j=i..k} binomial(k,j)*stirling1(n,k)*stirling2(j,i)*x^(k-j) then a(n-3) = (-1)^n*f(n,4,-3), (n>=4). - Milan Janjic, Mar 01 2009

E.g.f.: t*(3*t + 2)/(2*(t - 1)^6). - Ran Pan, Jul 10 2016

a(n) ~ sqrt(Pi/2)*exp(-n)*n^(n+1/2)*(n^5/24 + 85*n^4/288 + 5065*n^3/6912 + 955841*n^2/1244160 + 3710929*n/11943936). - Ilya Gutkovskiy, Jul 10 2016

EXAMPLE

G.f. = x + 15*x^2 + 180*x^3 + 2100*x^4 + 25200*x^5 + 317520*x^6 + ...

MAPLE

a:=n->sum((n-j)*n!/4!, j=3..n): seq(a(n), n=4..17); # Zerinvary Lajos, Apr 29 2007

MATHEMATICA

Table[(n(n+1)(n+3)!)/48, {n, 20}] (* Harvey P. Dale, Mar 14 2012 *)

a[ n_] := If[ n < 0, 0, n (n + 1) (n + 3)! / 48]; (* Michael Somos, May 27 2014 *)

PROG

(Sage) [factorial(m+1)*binomial(m-1, 2)/24 for m in xrange(3, 19)] # Zerinvary Lajos, Jul 05 2008

(Sage) [binomial(n, 4)*factorial (n-2)/2 for n in xrange(4, 18)] #  Zerinvary Lajos, Jul 07 2009

CROSSREFS

Sequence in context: A293476 A004992 A055084 * A138443 A235455 A016158

Adjacent sequences:  A005458 A005459 A005460 * A005462 A005463 A005464

KEYWORD

nonn,easy,nice

AUTHOR

N. J. A. Sloane

EXTENSIONS

More terms from Harvey P. Dale, Mar 14 2012

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified December 15 20:10 EST 2018. Contains 318154 sequences. (Running on oeis4.)