login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A116536 Numbers that can be expressed as the ratio of the product and the sum of consecutive prime numbers starting from 2. 18
1, 3, 125970, 1278362451795, 305565807424800745258151050335, 2099072522743338791053378243660769678400212601239922213271230, 330455532167461882998265688366895823334392289157931734871641555 (list; graph; refs; listen; history; text; internal format)
OFFSET

1,2

COMMENTS

Let prime(i) denote the i-th prime (A000040). Let F(m) = (Product_{i=1..m} prime(i)) / (Sum_{i=1..m} prime(i)). Sequence gives integer values of F(m) and A051838 gives corresponding values of m. - N. J. A. Sloane, Oct 01 2011

REFERENCES

G. Balzarotti and P. P. Lava, Le sequenze di numeri interi, Hoepli, 2008, p. 158.

LINKS

Amiram Eldar, Table of n, a(n) for n = 1..81 (terms 1..42 from Vincenzo Librandi)

FORMULA

a(n) = A002110(A051838(n)) / A007504(A051838(n)). - Reinhard Zumkeller, Oct 03 2011

a(n) = A159578(n)/A001414(A159578(n)). - Amiram Eldar, Nov 02 2020

EXAMPLE

a(1) = 1 because 2/2 = 1.

a(2) = 3 because (2*3*5)/(2+3+5) = 30/10 = 3.

a(3) = 125970 because (2*3*5*7*11*13*17*19)/(2+3+5+7+11+13+17+19) = 9699690/77 = 125790.

MAPLE

P:=proc(n) local i, j, pp, sp; pp:=1; sp:=0; for i from 1 by 1 to n do pp:=pp*ithprime(i); sp:=sp+ithprime(i); j:=pp/sp; if j=trunc(j) then print(j); fi; od; end: P(100);

MATHEMATICA

seq = {}; sum = 0; prod = 1; p = 1; Do[p = NextPrime[p]; prod *= p; sum += p; If[Divisible[prod, sum], AppendTo[seq, prod/sum]], {50}]; seq (* Amiram Eldar, Nov 02 2020 *)

PROG

(Magma) [p/s: n in [1..40] | IsDivisibleBy(p, s) where p is &*[NthPrime(i): i in [1..n]] where s is &+[NthPrime(i): i in [1..n]]];  // Bruno Berselli, Sep 30 2011

(Haskell)

import Data.Maybe (catMaybes)

a116536 n = a116536_list !! (n-1)

a116536_list = catMaybes $ zipWith div' a002110_list a007504_list where

   div' x y | m == 0    = Just x'

            | otherwise = Nothing where (x', m) = divMod x y

-- Reinhard Zumkeller, Oct 03 2011

CROSSREFS

Cf. A001414, A108552, A067111, A051838, A140763, A141092, A159578.

Subsequence of A325307.

Sequence in context: A292691 A086785 A159577 * A224241 A178505 A306594

Adjacent sequences:  A116533 A116534 A116535 * A116537 A116538 A116539

KEYWORD

nonn,easy

AUTHOR

Paolo P. Lava & Giorgio Balzarotti, Mar 27 2006

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified October 2 13:05 EDT 2022. Contains 357205 sequences. (Running on oeis4.)