The OEIS Foundation is supported by donations from users of the OEIS and by a grant from the Simons Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A000932 a(n) = a(n-1) + n*a(n-2); a(0) = a(1) = 1. (Formerly M2595 N1025) 8
 1, 1, 3, 6, 18, 48, 156, 492, 1740, 6168, 23568, 91416, 374232, 1562640, 6801888, 30241488, 139071696, 653176992, 3156467520, 15566830368, 78696180768, 405599618496, 2136915595392, 11465706820800, 62751681110208, 349394351630208, 1980938060495616 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,3 COMMENTS From Gary W. Adamson, Apr 20 2009: (Start) Uses the same recursive operation as A000085. Eigensequence of an infinite lower triangular matrix with (1, 1, 1, ...) as the main diagonal and (0, 2, 3, 4, 5, ...) as the subdiagonal. To generate A000085, replace the "0" in the subdiagonal with "1". (End) REFERENCES N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence). N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence). LINKS Seiichi Manyama, Table of n, a(n) for n = 0..799 (terms 0..200 from T. D. Noe) FORMULA From Paul D. Hanna, Aug 23 2011: (Start) E.g.f. satisfies: A(x) = 1 + (1+x)*Integral A(x) dx. E.g.f. satisfies: A(x) = A'(x)/(1+x) - (A(x)-1)/(1+x)^2. If offset 1, then e.g.f. A(x) satisfies: F(A(x)) = 1 + x, where F(x) equals the e.g.f. of A173895 and satisfies: F'(x) = 1/(1 + x*F(x)). (End) a(n)/a(n-1) = sqrt(n)+1/2+o(1) - Benoit Cloitre, Jul 02 2004 a(n) = -sqrt(Pi)/2*Sum[(-1)^k*2^(k/2)*Binomial[n,k]*(HypergeometricPFQRegularized[{1,k-n},{1+(k-n)/2,(1/2)*(1+k-n)},-(1/2)]+(-k+n)*HypergeometricPFQRegularized[{1,1+k-n},{1+(k-n)/2,(1/2)*(3+k-n)},-(1/2)])*HypergeometricU[1-k/2,3/2,1/2],{k,1,n}]. - Eric W. Weisstein, May 08 2013 E.g.f.: (1/2)*(2+e^(1/2*(1+x)^2)*sqrt(2*Pi)*(1+x)*(-erf(1/sqrt(2))+erf((1+x)/sqrt(2)))). - Eric W. Weisstein, May 08 2013 a(n) ~ sqrt(Pi)*(1-erf(1/sqrt(2)))/2 * n^(n/2+1/2)*exp(sqrt(n)-n/2+1/4) * (1+19/(24*sqrt(n))). - Vaclav Kotesovec, Aug 10 2013 a(n) = Sum_{k=0..n} A180048(n,k). - Philippe Deléham, Oct 28 2013 EXAMPLE E.g.f.: A(x) = 1 + x + 3*x^2/2! + 6*x^3/3! + 18*x^4/4! + 48*x^5/5! + 156*x^6/6! + ... If offset 1, then e.g.f. A(x) = x + x^2/2! + 3*x^3/3! + 6*x^4/4! + 18*x^5/5! + 48*x^6/6! + 156*x^7/7! + ... + a(n-1)*x^n/n! + ... satisfies F(A(x)) = 1 + x, where F(x) = e.g.f. of A173895: F(x) = 1 + x - x^2/2! + 9*x^4/4! - 48*x^5/5! + 15*x^6/6! + 2448*x^7/7! + ... MATHEMATICA RecurrenceTable[{a[n] == a[n - 1] + n a[n - 2], a[0] == a[1] == 1}, a, {n, 26}] (* Eric W. Weisstein, May 08 2013 *) t = {1, 1}; Do[AppendTo[t, t[[-1]] + n*t[[-2]]], {n, 2, 30}]; t (* T. D. Noe, Jun 21 2012 *) CROSSREFS Cf. A173895, A000085. Sequence in context: A287212 A083337 A019308 * A187124 A161006 A148560 Adjacent sequences:  A000929 A000930 A000931 * A000933 A000934 A000935 KEYWORD nonn,easy AUTHOR EXTENSIONS More terms from Benoit Cloitre, Jul 02 2004 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified August 9 13:57 EDT 2020. Contains 336323 sequences. (Running on oeis4.)