login
This site is supported by donations to The OEIS Foundation.

 

Logo


Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A002664 2^n - C(n,0)- ... - C(n,4).
(Formerly M4395 N1851)
15
0, 0, 0, 0, 0, 1, 7, 29, 93, 256, 638, 1486, 3302, 7099, 14913, 30827, 63019, 127858, 258096, 519252, 1042380, 2089605, 4185195, 8377705, 16764265, 33539156, 67090962, 134196874, 268411298, 536843071, 1073709893 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,7

COMMENTS

From Gary W. Adamson, Jul 24 2010: (Start)

Starting with "1" = eigensequence of a triangle with binomial C(n,5):

(1, 6, 21, 56, ...) as the left border and the rest 1's. (End)

The Kn26 sums, see A180662, of triangle A065941 equal the terms (doubled) of this sequence minus the five leading zeros. - Johannes W. Meijer, Aug 15 2011

Starting (0, 0, 0, 0, 1, 7, 29,...), this is the binomial transform of (0, 0, 0, 0, 1, 2, 2, 2,...). Starting (1, 7, 29,...), this is the binomial transform of (1, 6, 16, 26, 31, 32, 32, 32,...). - Gary W. Adamson, Jul 28 2015

REFERENCES

J. H. Conway and R. K. Guy, The Book of Numbers, New York: Springer-Verlag, 1995, Chapter 3, p.s 76 - 79

J. Eckhoff, Der Satz von Radon in konvexen Productstrukturen II, Monat. f. Math., 73 (1969), 7-30.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).

LINKS

Vincenzo Librandi, Table of n, a(n) for n = 0..1000

Simon Plouffe, Approximations de séries génératrices et quelques conjectures, Dissertation, Université du Québec à Montréal, 1992.

Simon Plouffe, 1031 Generating Functions and Conjectures, Université du Québec à Montréal, 1992.

H. P. Robinson, Letter to N. J. A. Sloane, Mar 21 1985

Index entries for linear recurrences with constant coefficients, signature (7, -20, 30, -25, 11, -2).

FORMULA

G.f.: x^5/((1-2*x)*(1-x)^5).

a(n) = sum{k=0..n, C(n, k+5)} = sum{k=5..n, C(n, k)}; a(n) = 2a(n-1) + C(n-1, 4). - Paul Barry, Aug 23 2004

a(n) = 2^n - n^4/24 + n^3/12 - 11*n^2/24 - 7*n/12 - 1.  - Bruno Berselli, May 19 2011 [Robinson (1985) gives an alternative version of this formula, for a different offset. - N. J. A. Sloane, Oct 20 2015]

MAPLE

a:=n->sum(binomial(n+1, 2*j), j=3..n+1): seq(a(n), n=0..30); # Zerinvary Lajos, May 12 2007

A002664:=1/(2*z-1)/(z-1)**5; # conjectured by Simon Plouffe in his 1992 dissertation

MATHEMATICA

a=1; lst={}; s1=s2=s3=s4=s5=0; Do[s1+=a; s2+=s1; s3+=s2; s4+=s3; s5+=s4; AppendTo[lst, s5]; a=a*2, {n, 5!}]; lst (* Vladimir Joseph Stephan Orlovsky, Jan 10 2009 *)

Table[Sum[ Binomial[n, k + 5], {k, 0, n}], {n, 0, 30}] (* Zerinvary Lajos, Jul 08 2009 *)

Table[2^n-Total[Binomial[n, Range[0, 4]]], {n, 0, 30}] (* or *) LinearRecurrence[ {7, -20, 30, -25, 11, -2}, {0, 0, 0, 0, 0, 1}, 40] (* Harvey P. Dale, Sep 03 2016 *)

PROG

(MAGMA) [2^n-n^4/24+n^3/12-11*n^2/24-7*n/12-1: n in [0..35]]; // Vincenzo Librandi, May 20 2011

(Haskell)

a002664 n = a002664_list !! n

a002664_list = map (sum . drop 5) a007318_tabl

-- Reinhard Zumkeller, Jun 20 2015

CROSSREFS

a(n) = A055248(n, 5). Partial sums of A002663.

Cf. A000079, A000225, A000295, A002662, A002663, A035038-A035042.

Cf. A007318.

Sequence in context: A053295 A266939 A055798 * A042609 A002941 A193655

Adjacent sequences:  A002661 A002662 A002663 * A002665 A002666 A002667

KEYWORD

nonn,easy

AUTHOR

N. J. A. Sloane

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified September 28 03:11 EDT 2016. Contains 276599 sequences.