This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055798 T(2n+5,n), array T as in A055794. 2
 1, 7, 29, 93, 255, 627, 1419, 3003, 6006, 11440, 20878, 36686, 62322, 102714, 164730, 257754, 394383, 591261, 870067, 1258675, 1792505, 2516085, 3484845, 4767165, 6446700, 8625006, 11424492, 14991724, 19501108, 25158980, 32208132, 40932804, 51664173 (list; graph; refs; listen; history; text; internal format)
 OFFSET 0,2 COMMENTS If Y is a 2-subset of an n-set X then, for n>=8, a(n-8) is the number of 8-subsets of X which have no exactly one element in common with Y. - Milan Janjic, Dec 28 2007 LINKS Vincenzo Librandi, Table of n, a(n) for n = 0..1000 Index entries for linear recurrences with constant coefficients, signature (9,-36,84,-126,126,-84,36,-9,1). FORMULA a(n-8) = binomial(n,8)-2*binomial(n-2,7), n=8,9,10,.... - Milan Janjic, Dec 28 2007 G.f.: (1-2*x+2*x^2)/(1-x)^9. [Colin Barker, Feb 22 2012] a(n) = 9*a(n-1) - 36*a(n-2) + 84*a(n-3) - 126*a(n-4) + 126*a(n-5) - 84*a(n-6) + 36*a(n-7) - 9*a(n-8) + a(n-9). - Vincenzo Librandi, May 01 2012 MATHEMATICA CoefficientList[Series[(-2*(z - 1)*z - 1)/(z - 1)^9, {z, 0, 100}], z] (* Vladimir Joseph Stephan Orlovsky, Jul 16 2011 *) LinearRecurrence[{9, -36, 84, -126, 126, -84, 36, -9, 1}, {1, 7, 29, 93, 255, 627, 1419, 3003, 6006}, 50] (* Vincenzo Librandi, May 01 2012 *) PROG (MAGMA) [Binomial(n, 8)-2*Binomial(n-2, 7): n in [8..40]]; // Vincenzo Librandi, May 01 2012 CROSSREFS Cf. A051601. Sequence in context: A320753 A053295 A266939 * A002664 A290901 A294843 Adjacent sequences:  A055795 A055796 A055797 * A055799 A055800 A055801 KEYWORD nonn,easy AUTHOR Clark Kimberling, May 28 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent
The OEIS Community | Maintained by The OEIS Foundation Inc.

Last modified February 22 10:16 EST 2019. Contains 320390 sequences. (Running on oeis4.)