login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Please make a donation (tax deductible in USA) to keep the OEIS running. Over 5000 articles have referenced us, often saying "we discovered this result with the help of the OEIS".

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A106400 Thue-Morse sequence: let A_k denote the first 2^k terms; then A_0 = 1 and for k >= 0, A_{k+1} = A_k B_k, where B_k is obtained from A_k by interchanging 1's and -1's. 11
1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1, 1, -1, 1, -1, -1, 1, -1, 1, 1, -1, -1, 1, 1, -1, 1, -1, -1, 1, 1, -1, -1, 1, -1, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,1

COMMENTS

See A010060, the main entry for the Thue-Morse sequence, for additional information. - N. J. A. Sloane, Aug 13 2014

a(A000069(n)) = -1; a(A001969(n)) = +1. - Reinhard Zumkeller, Apr 29 2012

Partial sums of every third terms give A005599. - Reinhard Zumkeller, May 26 2013

Fixed point of the morphism 1 --> 1,-1 and -1 --> -1,1. - Robert G. Wilson v, Apr 07 2014

REFERENCES

Hao Fu, GN Han, Computer assisted proof for Apwenian sequences related to Hankel determinants, arXiv preprint arXiv:1601.04370, 2016

LINKS

Reinhard Zumkeller, Table of n, a(n) for n = 0..10000

Joerg Arndt, Matters Computational (The Fxtbook)

Yann Bugeaud and Guo-Niu Han, A combinatorial proof of the non-vanishing of Hankel determinants of the Thue-Morse sequence, Electronic Journal of Combinatorics 21(3) (2014), #P3.26.

Philip Lafrance, Narad Rampersad, Randy Yee, Some properties of a Rudin-Shapiro-like sequence, arXiv:1408.2277 [math.CO], 2014.

Wikipedia, , Bell polynomials

FORMULA

a(n) = (-1)^A010060(n).

a(n) = (-1)^wt(n), where wt(n) is the binary weight of n, A000120(n).

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^4)) where f(u, v, w) = v^3 - 2*u*v*w + u^2*w.

G.f. A(x) satisfies 0 = f(A(x), A(x^2), A(x^3), A(x^6)) where f(u1, u2, u3, u6) = u6*u1^3 - 3*u6*u2*u1^2 + 3*u6*u2^2*u1 - u3*u2^3.

Euler transform of sequence b(n) where b(2^k) = -1 and zero otherwise.

G.f.: Product_{k>=0} (1 - x^(2^k)) = A(x) = (1-x) * A(x^2).

a(n) = B_n(-A038712(1)*0!, ..., -A038712(n)*(n-1)!)/n!, where B_n(x_1, ..., x_n) is the n-th complete Bell polynomial. See the Wikipedia link for complete Bell polynomials , and A036040 for the coefficients of these partition polynomials. - Gevorg Hmayakyan, Jul 10 2016 (edited by - Wolfdieter Lang, Aug 31 2016)

EXAMPLE

G.f. = 1 - x - x^2 + x^3 - x^4 + x^5 + x^6 - x^7 - x^8 + x^9 + x^10 + ...

The first 2^2 = 4 terms are 1, -1, -1, 1. Exchanging 1 and -1 gives -1, 1, 1, -1, which are a(4) through a(7). - Michael B. Porter, Jul 29 2016

MAPLE

A106400 := proc(n)

        1-2*A010060(n) ;

end proc: # R. J. Mathar, Jul 22 2012

subs("0"=1, "1"=-1, StringTools:-Explode(StringTools:-ThueMorse(1000))); # Robert Israel, Sep 01 2015

MATHEMATICA

tm[0] = 0; tm[n_?EvenQ] := tm[n/2]; tm[n_] := 1 - tm[(n-1)/2]; Table[(-1)^tm[n], {n, 0, 101}] (* Jean-Fran├žois Alcover, Oct 24 2013 *)

Nest[ Flatten[# /. {1 -> {1, -1}, -1 -> {-1, 1}}] &, {1}, 7] (* Robert G. Wilson v, Apr 07 2014 *)

Table[Coefficient[Product[1 - x^(2^k), {k, 0, Log2[n + 1]}], x, n], {n, 0, 20}] (* Vladimir Reshetnikov, Nov 11 2016 *)

PROG

(PARI) {a(n) = if( n<1, n>=0, a(n\2) * (-1)^(n%2))};

(PARI) {a(n) = my(A, m); if( n<1, n==0, m=1; A = 1 + O(x); while( m<=n, m*=2; A = subst(A, x, x^2) * (1-x)); polcoeff(A, n))};

(Haskell)

import Data.List (transpose)

a106400 n = a106400_list !! n

a106400_list =  1 : concat

   (transpose [map negate a106400_list, tail a106400_list])

-- Reinhard Zumkeller, Apr 29 2012

(PARI) a(n) = { 1 - 2 * (hammingweight(n) % 2) };  \\ Gheorghe Coserea, Aug 30 2015

(MAGMA) [1-2*(&+Intseq(n, 2) mod(2)): n in [0..100]]; // Vincenzo Librandi, Sep 01 2015

CROSSREFS

Convolution inverse of A018819.

Cf. A010060 (0 -> 1 & 1 -> -1), A000120, A005599, A000069, A001969, A038712.

Sequence in context: A112865 A114523 A130151 A143431 A064179 A065357 A121241

Adjacent sequences:  A106397 A106398 A106399 * A106401 A106402 A106403

KEYWORD

sign,easy,changed

AUTHOR

Michael Somos, May 02 2005

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy .

Last modified December 8 10:49 EST 2016. Contains 278939 sequences.