login
A013918
Primes equal to the sum of the first k primes for some k.
47
2, 5, 17, 41, 197, 281, 7699, 8893, 22039, 24133, 25237, 28697, 32353, 37561, 38921, 43201, 44683, 55837, 61027, 66463, 70241, 86453, 102001, 109147, 116533, 119069, 121631, 129419, 132059, 263171, 287137, 325019, 329401, 333821, 338279, 342761
OFFSET
1,1
COMMENTS
Intersection of A000040 and A007504. - David W. Wilson, May 11 2007
Sum of the first k primes p_1+p_2+...+p_k is in the sequence if and only if there exists the prime q for which p_i divides p_1+p_2+...+p_k+q for all i to k. - Vladimir Letsko, Oct 13 2013
LINKS
FORMULA
a(n) = A007504(A013916(n)).
MATHEMATICA
Select[Accumulate[Prime[Range[1000]]], PrimeQ] (* Vladimir Joseph Stephan Orlovsky, Sep 01 2008 *)
PROG
(PARI) n=0; forprime(k=2, 2300, n=n+k; if(isprime(n), print(n))) \\ Michael B. Porter, Jan 29 2010
(Haskell)
a013918 n = a013918_list !! (n-1)
a013918_list = filter ((== 1) . a010051) a007504_list
-- Reinhard Zumkeller, Feb 09 2015
CROSSREFS
Cf. A013916, A013917, A189153 (number of these primes < 10^n).
Sequence in context: A080898 A346134 A081763 * A007351 A300692 A076076
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Renaud Lifchitz (100637.64(AT)CompuServe.COM)
EXTENSIONS
More terms from David W. Wilson
STATUS
approved