login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A122045 Euler (or secant) numbers E(n). 76
1, 0, -1, 0, 5, 0, -61, 0, 1385, 0, -50521, 0, 2702765, 0, -199360981, 0, 19391512145, 0, -2404879675441, 0, 370371188237525, 0, -69348874393137901, 0, 15514534163557086905, 0, -4087072509293123892361, 0, 1252259641403629865468285, 0, -441543893249023104553682821 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,5
COMMENTS
The convention in the OEIS is that the alternate zeros are normally omitted in such sequences. See A000364 for the official version of this sequence.
Odd primes p such that p | E(p-1) are primes p == 1 (mod 4), A002144. Conjecture: odd composites m such that m | E(m-1) are Carmichael numbers m such that p == 1 (mod 4) for every prime p|m, A265237. - Thomas Ordowski, Feb 06 2020
LINKS
Fernando Barbero G., Juan Margalef-Bentabol, and Eduardo J. S. Villaseñor, A two-sided Faulhaber-like formula involving Bernoulli polynomials, arXiv:2002.00550 [math.NT], 2020.
Marilena Barnabei, Flavio Bonetti, Niccolò Castronuovo, and Matteo Silimbani, Ascending runs in permutations and valued Dyck paths, Ars Mathematica Contemporanea (2019) Vol. 16, No. 2, 445-463.
Hacène Belbachir and Yassine Otmani, Quadrinomial-Like Versions for Wolstenholme, Morley and Glaisher Congruences, Integers (2023) Vol. 23.
Michael D. Hirschhorn, Binomial Identities and Congruences for Euler Numbers, Fibonacci Quart. 53 (2015), no. 4, 319-322.
Guodong Liu, Generating functions and generalized Euler numbers, Proc. Japan Acad. Ser. A Math. Sci., Volume 84, Number 2 (2008), 29-34. See p 32.
F. Luca, A. Pizarro-Madariaga, and C. Pomerance, On the counting function of irregular primes, 2014.
Emanuele Munarini, Two-Parameter Identities for q-Appell Polynomials, Journal of Integer Sequences, Vol. 26 (2023), Article 23.3.1.
A. Niedermaier and J. Remmel, Analogues of up-down permutations for colored permutations, J. Int. Seq. 13 (2010) 10.5.6.
FORMULA
E.g.f.: sech(x). - Michael Somos, Mar 11 2014
a(n) = (Sum_{k>=0} (-1)^k*(2*k+1)^n)*2. - Gottfried Helms, Mar 09 2012
From Sergei N. Gladkovskii, Oct 14 2012 - Oct 13 2013: (Start)
Continued fractions:
G.f.: 1/U(0) where U(k) = 1 - x + x*(k+1)/(1 - x*(k+1)/U(k+1)).
G.f.: 1/U(0) where U(k) = 1 - x^2 + x^2*(2*k+1)*(2*k+2)/(1 + x^2*(2*k+1)*(2*k+2)/ U(k+1)).
E.g.f.: (1-x)/U(0) where U(k) = 1 - x/(1 - x/(x - (2*k+1)*(2*k+2)/U(k+1)).
E.g.f.: 1 - x^2/U(0) where U(k) = (2*k+1)*(2*k+2) + x^2 - x^2*(2*k+1)*(2*k+2)/U(k+1).
E.g.f.: 1/U(0) where U(k) = 1 + x^2/(2*(2*k+1)*(4*k+1) - 2*x^2*(2*k+1)*(4*k+1)/(x^2 + 4*(4*k+3)*(k+1)/U(k+1))).
E.g.f.: (2 + x^4/(U(0)*(x^2-2) - 2))/(2-x^2) where U(k) = 4*k + 4 + 1/(1 + x^2/(2 - x^2 + (2*k+3)*(2*k+4)/U(k+1))).
G.f.: 1/G(0) where G(k) = 1 + x^2*(2*k+1)^2/(1 + x^2*(2*k+2)^2/G(k+1)) (due to T. J. Stieltjes).
G.f.: 1/S(0) where S(k) = 1 + x^2*(k+1)^2/S(k+1) (due to T. J. Stieltjes).
G.f.: 1 - x/(1+x) + x/(1+x)/Q(0) where Q(k) = 1 - x + x*(k+2)/(1 - x*(k+1)/Q(k+1)).
G.f.: -(1/x)/Q(0) where Q(k) = -1/x + (k+1)^2/Q(k+1) (due to T. J. Stieltjes).
G.f.: (1/(1-x))/Q(0) + 1/(1-x) where Q(k) = 1 - 1/x + (k+1)*(k+2)/Q(k+1).
G.f.: (x/(x-1))/Q(0) + 1/(1-x) where Q(k) = 1 - x + x^2*(k+1)*(k+2)/Q(k+1).
G.f.: 1 - x/(1+x) + (x/(1+x))/Q(0) where Q(k) = 1 + x + (k+1)*(k+2)*x^2/Q(k+1).
E.g.f.: 1 - T(0)*x^2/(2+x^2) where T(k) = 1 - x^2*(2*k+1)*(2*k+2)/(x^2*(2*k+1)*(2*k+2) - ((2*k+1)*(2*k+2) + x^2)*((2*k+3)*(2*k+4) + x^2)/T(k+1)).
G.f.: T(0) where T(k) = 1 - x^2*(k+1)^2/(x^2*(k+1)^2 + 1/T(k+1)). (End)
a(n) = 2^(2*n+1)*(zeta(-n,1/4) - zeta(-n,3/4)), where zeta(a, z) is the generalized Riemann zeta function. - Peter Luschny, Mar 11 2015
a(n) = 2^n*(2^(n+1)/(n+1))*(B(n+1, 3/4) - B(n+1, 1/4)) where B(n,x) is the n-th Bernoulli polynomial. See Liu link. - Michel Marcus, May 20 2017 [This is the same as: a(n) = -4^(n+1)*B(n+1, 1/4)*((n+1) mod 2)/(n+1). Peter Luschny, Oct 30 2020]
a(n) = 2*Im(PolyLog(-n, I)). - Peter Luschny, Sep 29 2020
a(4n) == 5 (mod 60) and a(4n+2) == -1 (mod 60). See Hirschhorn. - Michel Marcus, Jan 11 2022
For n > 1, a(n) = -Sum_{k=1..floor(n/2)} a(n-2*k)*binomial(n,2*k). - Tani Akinari, Sep 15 2023
EXAMPLE
G.f. = 1 - x^2 + 5*x^4 - 61*x^6 + 1385*x^8 - 50521*x^10 + 2702765*x^12 + ...
MAPLE
seq(euler(n) , n=0..31); # Zerinvary Lajos, Mar 15 2009
P := proc(n, x) option remember; if n = 0 then 1 else
(n*x+(1/2)*(1-x))*P(n-1, x)+x*(1-x)*diff(P(n-1, x), x); expand(%) fi end:
A122045 := n -> (-1)^n*subs(x=-1, P(n, x)):
seq(A122045(n), n=0..30); # Peter Luschny, Mar 07 2014
ptan := proc(n) option remember; if irem(n, 2) = 1 then 0 else
-add(`if`(k=0, 1, binomial(n, k)*ptan(n - k)), k = 0..n-1, 2) fi end:
A122045 := n -> ifelse(n = 0, 1, ptan(n)):
seq(A122045(n), n = 0..30); # Peter Luschny, Jun 06 2022
MATHEMATICA
Table[EulerE[n], {n, 0, 30}]
Range[0, 30]! CoefficientList[ Series[ Sech[x], {x, 0, 30}], x] (* Robert G. Wilson v, Aug 08 2018 *)
PROG
(Sage) [euler_number(i) for i in range(31)] # Zerinvary Lajos, Mar 15 2009
(PARI) x='x+O('x^66); Vec(serlaplace(1/cosh(x))) \\ Joerg Arndt, Mar 10 2014
(PARI) a(n) = 2^n*2^(n+1)*(subst(bernpol(n+1, x), x, 3/4) - subst(bernpol(n+1, x), x, 1/4))/(n+1); \\ Michel Marcus, May 20 2017
(Python) from sympy import bernoulli as B
def a(n): return int(2**n*2**(n + 1)*(B(n + 1, 3/4) - B(n + 1, 1/4))/(n + 1))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 24 2017, after PARI code by Michel Marcus
(Python) from functools import cache
from math import comb as binomial
@cache
def ptan(n): # see also A331978 and A350972.
return (0 if n % 2 == 1 else
-sum(binomial(n, k) * ptan(n-k) if k > 0 else 1 for k in range(0, n-1, 2)))
def A122045(n): return 1 if n == 0 else ptan(n)
print([A122045(n) for n in range(31)]) # Peter Luschny, Jun 06 2022
(Magma) m:=35; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!( 1/Cosh(x) )); [Factorial(n-1)*b[n]: n in [1..m-1]]; // G. C. Greubel, Feb 13 2020
(Maxima) a[n]:=if n<2 then 1-n else sum(-a[n-2*k]*binomial(n, 2*k), k, 1, floor(n/2));
makelist(a[n], n, 0, 50); /* Tani Akinari, Sep 15 2023 */
CROSSREFS
Sequence in context: A368768 A297206 A103709 * A294314 A347599 A266324
KEYWORD
sign
AUTHOR
Roger L. Bagula, Sep 13 2006
EXTENSIONS
Edited by N. J. A. Sloane, Sep 17 2006
STATUS
approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified March 18 22:56 EDT 2024. Contains 370952 sequences. (Running on oeis4.)