login
A333242
Prime numbers with an odd number of steps in their prime index chain.
9
2, 5, 7, 13, 19, 23, 29, 31, 37, 43, 47, 53, 59, 61, 71, 73, 79, 89, 97, 101, 103, 107, 113, 131, 137, 139, 149, 151, 163, 167, 173, 179, 181, 193, 197, 199, 223, 227, 229, 233, 239, 251, 257, 263, 269, 271, 281, 293, 307, 311, 313, 317, 331, 337, 347, 349, 359, 373
OFFSET
1,1
COMMENTS
This sequence can also be generated by the N-sieve.
LINKS
Michael P. May, Properties of Higher-Order Prime Number Sequences, Missouri J. Math. Sci. (2020) Vol. 32, No. 2, 158-170; and arXiv version, arXiv:2108.04662 [math.NT], 2021.
Michael P. May, Relationship Between the Prime-Counting Function and a Unique Prime Number Sequence, Missouri J. Math. Sci. (2023), Vol. 35, No. 1, 105-116.
FORMULA
{ p in primes : A078442(p) mod 2 = 1 }.
a(n) = A000720(A262275(n)). - Andrew Howroyd, Mar 15 2020
MAPLE
b:= proc(n) option remember;
`if`(isprime(n), 1+b(numtheory[pi](n)), 0)
end:
a:= proc(n) option remember; local p; p:= a(n-1);
do p:= nextprime(p);
if b(p)::odd then break fi
od; p
end: a(1):=2:
seq(a(n), n=1..60); # Alois P. Heinz, Mar 15 2020
MATHEMATICA
Select[Prime@ Range@ 75, EvenQ@ Length@ NestWhileList[ PrimePi, #, PrimeQ] &] (* Giovanni Resta, Mar 15 2020 *)
PROG
(PARI) \\ here b(n) is A078442.
b(n)={my(k=0); while(isprime(n), k++; n=primepi(n)); k}
select(n->b(n)%2, [1..500]) \\ Andrew Howroyd, Mar 15 2020
CROSSREFS
Cf. A000040, A000720, A078442, A262275 (complement in primes), A333243, A333244.
Sequence in context: A169690 A144300 A258430 * A045353 A038985 A109652
KEYWORD
nonn
AUTHOR
Michael P. May, Mar 12 2020
EXTENSIONS
Terms a(21) and beyond from Andrew Howroyd, Mar 15 2020
STATUS
approved