This site is supported by donations to The OEIS Foundation.

 Hints (Greetings from The On-Line Encyclopedia of Integer Sequences!)
 A055541 Total number of leaves (nodes of vertex degree 1) in all labeled trees with n nodes. 8
 0, 2, 6, 36, 320, 3750, 54432, 941192, 18874368, 430467210, 11000000000, 311249095212, 9659108818944, 326173191714734, 11905721598812160, 467086816406250000, 19599665578316398592, 875901453762003632658, 41532319635035234107392, 2082547005958224830656820 (list; graph; refs; listen; history; text; internal format)
 OFFSET 1,2 COMMENTS Equivalently, a(n) is the number of rooted labeled trees such that the root node has degree 1. - Geoffrey Critzer, Feb 07 2012 LINKS Eric Weisstein's World of Mathematics, Tree Leaf. FORMULA a(n)=n*(n-1)^(n-2), n>1. E.g.f.: -x*LambertW(-x). - Vladeta Jovovic, Mar 31 2001 a(n) = sum{k=1 to n} (A055314(n, k)*k). E.g.f.: x*T(x) where T(x) is the e.g.f. for A000169. - Geoffrey Critzer, Feb 07 2012 MATHEMATICA Join[{0, 2}, Table[Sum[n!/k! StirlingS2[n-2, n-k] k, {k, 2, n-1}], {n, 3, 20}]] (* Geoffrey Critzer, Nov 22 2011 *) CROSSREFS Cf. A003227, A003228, A055314, A055540, A055897. Essentially the same as A061302. Sequence in context: A007657 A182037 A061302 * A133822 A133892 A196870 Adjacent sequences:  A055538 A055539 A055540 * A055542 A055543 A055544 KEYWORD nonn,changed AUTHOR EXTENSIONS More terms, formula from Christian G. Bower, Jun 12 2000 STATUS approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Puzzles | Hot | Classics
Recent Additions | More pages | Superseeker | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .