This site is supported by donations to The OEIS Foundation.



Invitation: celebrating 50 years of OEIS, 250000 sequences, and Sloane's 75th, there will be a conference at DIMACS, Rutgers, Oct 9-10 2014.

(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A001168 Number of fixed polyominoes with n cells.
(Formerly M1639 N0641)
1, 2, 6, 19, 63, 216, 760, 2725, 9910, 36446, 135268, 505861, 1903890, 7204874, 27394666, 104592937, 400795844, 1540820542, 5940738676, 22964779660, 88983512783, 345532572678, 1344372335524, 5239988770268, 20457802016011, 79992676367108, 313224032098244, 1228088671826973 (list; graph; refs; listen; history; text; internal format)



N. Madras proved in 1999 the existence of the lim_{n \to \infty} a(n+1)/a(n), which is the real limit growth rate of the number of polyominoes;  and hence, this limit is equal to lim_{n \to \infty} a(n)^{1/n}, the well-known Klarner's constant.  The currently best-known lower and upper bounds on this constant are 3.9801 (Barequet et al., 2006) and 4.6496 (Klarner and Rivest, 1973), respectively.


G. Barequet, M. Moffie, A. Ribo, and G. Rote, Counting polyominoes on twisted cylinders, Integers (electronic journal, 6 (2006), A22, 37 pp.

Stirling Chow and Frank Ruskey, Gray codes for column-convex polyominoes and a new class of distributive lattices, Discrete Mathematics, 309 (2009), 5284-5297. [From N. J. A. Sloane, Sep 15 2009]

A. R. Conway and A. J. Guttmann, On two-dimensional percolation, J. Phys. A: Math. Gen. 28(1995) 891-904.

S. R. Finch, Mathematical Constants, Cambridge, 2003, pp. 378-382.

J. Fortier, A. Goupil, J. Lortie and J. Tremblay, Exhaustive generation of gominoes, Theoretical Computer Science, 2012; http://dx.doi.org/10.1016/j.tcs.2012.02.032. - From N. J. A. Sloane, Sep 20 2012

J. E. Goodman and J. O'Rourke, editors, Handbook of Discrete and Computational Geometry, CRC Press, 1997, p. 229.

A. J. Guttmann, ed., Polygons, Polyominoes and Polycubes, Springer, 2009, p. 478. (Table 16.10 has 56 terms of this sequence.) [From Robert A. Russell, Nov 05 2010]

I. Jensen and A. J. Guttmann, Statistics of lattice animals (polyominoes) and polygons. J. Phys. A 33, L257-L263 (2000).

D. A. Klarner and R. L. Rivest, A procedure for improving the upper bound for the number of n-ominoes, Canadian J. of Mathematics, 25 (1973), 585-602.

W. F. Lunnon, Counting polyominoes, pp. 347-372 of A. O. L. Atkin and B. J. Birch, editors, Computers in Number Theory. Academic Press, NY, 1971.

W. F. Lunnon, Counting hexagonal and triangular polyominoes, pp. 87-100 of R. C. Read, editor, Graph Theory and Computing. Academic Press, NY, 1972.

N. Madras, A pattern theorem for lattice clusters, Annals of Combinatorics, 3 (1999), 357-384.

D. H. Redelmeier, Counting polyominoes: yet another attack, Discrete Math., 36 (1981), 191-203.

N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).

N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).


I. Jensen, Table of n, a(n) for n = 1..56

S. R. Finch, Klarner's Lattice Animal Constant

I. Jensen, Enumerations of lattice animals and trees, arXiv:cond-mat/0007239.

I. Jensen, Home page

I. Jensen, More terms

D. E. Knuth, Program

D. E. Knuth, First 47 terms

Tomas Oliveira e Silva, Enumeration of polyominoes

Eric Weisstein's World of Mathematics, Polyomino


Cf. A000105, A006746, A056877, A006748, A056878, A006747, A006749, A006884, A006885, A006877, A006878, A033492.

A006762 is another version.

Sequence in context: A057409 A141771 A001170 * A193111 A119255 A071969

Adjacent sequences:  A001165 A001166 A001167 * A001169 A001170 A001171




N. J. A. Sloane.


Extended to n=28 by Tomas Oliveira e Silva. Extended to n=46 by Iwan Jensen. Verified (and one more term found) by D. E. Knuth, Jan 09 2001.

Richard Schroeppel communicated Jensen's calculation of the first 56 terms, Feb 21 2005

Gill Barequet commented on Madras's proof from 1999 of the limit growth rate of this sequence, and provided references to the currently best-known bounds on it, May 24, 2011.



Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified July 22 17:39 EDT 2014. Contains 244836 sequences.