login
This site is supported by donations to The OEIS Foundation.

 

Logo

Annual Appeal: Today, Nov 11 2014, is the 4th anniversary of the launch of the new OEIS web site. 70,000 sequences have been added in these four years, all edited by volunteers. Please make a donation (tax deductible in the US) to help keep the OEIS running.

Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
A155069 Expansion of (3-x-sqrt(1-6*x+x^2))/2. 4
1, 1, 2, 6, 22, 90, 394, 1806, 8558, 41586, 206098, 1037718, 5293446, 27297738, 142078746, 745387038, 3937603038, 20927156706, 111818026018, 600318853926, 3236724317174, 17518619320890, 95149655201962, 518431875418926 (list; graph; refs; listen; history; text; internal format)
OFFSET

0,3

COMMENTS

A minor variation of A006318. Unsigned version of A086456 and A103137. The Hankel transform of this sequence is A006125.

a(n) is also the number of "branching configurations" for RNA (see Sankoff, 1985) that have exactly n hairpins. - Lee A. Newberg, Mar 30 2010

a(n) is also the number of ways to insert balanced parentheses into a product of n variables such that each parenthesis pair has 2 or more top-level factors. - Lee A. Newberg, Apr 06 2010

REFERENCES

S. Kitaev, Patterns in Permutations and Words, Springer-Verlag, 2011. see p. 399 Table A.7

LINKS

Table of n, a(n) for n=0..23.

Sankoff (1985) Simultaneous solution of the RNA folding, alignment and protosequence problems, Siam J. Appl. Math 45(5):810-825. [From Lee A. Newberg, Mar 30 2010]

FORMULA

G.f.: (3-x-sqrt(1-6x+x^2))/2.

G.f.: 4 / (3 - x + sqrt(1 - 6*x + x^2)). - Michael Somos, Apr 18 2012

a(n) ~ sqrt((sqrt(18)-4)/(4*Pi)) * n^(-3/2) * (3 + sqrt(8))^n, which is, approximately, a(n) ~ 0.1389558645 * n^(-1.5) * 5.828427099^n. - Lee A. Newberg, Apr 06 2010

a(n) = top left term of M^n, where M = the production matrix:

1, 1, 0, 0, 0, ...

1, 2, 1, 0, 0, ...

1, 2, 2, 1, 0, ...

1, 2, 2, 2, 1, ...

1, 2, 2, 2, 2, 1, ...

...

Top row terms of M^n generates rows of triangle A132372. - Gary W. Adamson, Jul 07 2011

G.f.: A(x)=(3-x-sqrt(1-6x+x^2))/2= 2 - G(0); G(k)= 1 + x - 2*x/G(k+1); (continued fraction, 1-step, 1 var.). - Sergei N. Gladkovskii, Jan 04 2012

G.f.: A(x)=(3-x-sqrt(1-6x+x^2))/2= G(0); G(k)= := 1 - x/(1 - 2/G(k+1)); (continued fraction, 2-step, 2 var.). - Sergei N. Gladkovskii, Jan 04 2012

Conjecture: n*a(n) +3*(3-2*n)*a(n-1) +(n-3)*a(n-2)=0. - R. J. Mathar, Jul 24 2012

G.f.: 1 / (1 - x / (1 - x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ... )))))) = 1 + x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / (1 - 2*x / (1 - x / ... )))))). - Michael Somos, Jan 03 2013

G.f.: 2 - x - G(0), where G(k)= k+1 - 2*x*(k+1) - 2*x*(k+1)*(k+2)/G(k+1) ; (continued fraction). - Sergei N. Gladkovskii, Jul 14 2013

a(n) = 1/n*sum(i = 0..n/2, binomial(n+i-1,i)* binomial(2*n, n-2*i-1)), n>0, a(0)=1. - Vladimir Kruchinin, Nov 13 2014

a(n) = Catalan(n)*hypergeometric([1/2-n/2, 1-n/2, n], [n/2+1, n/2+3/2], 1). - Peter Luschny, Nov 14 2014

EXAMPLE

From Lee A. Newberg, Mar 30 2010: (Start)

For n = 2, the a(2) = 2 branching configurations are ()() and (()()), where each () indicates a hairpin (also termed 1-loop) and each other pair of parentheses indicates a k-loop for k >= 3.

For n = 3, the a(3) = 6 branching configurations are ()()(), (()())(), ()(()()), (()()()), ((()())()), and (()(()())). (End)

When inserting balanced parentheses into the product x^n: For n = 0, the a(0) = 1 possible term is the empty term. For n = 1, the a(1) = 1 possible term is x. For n = 2, the a(2) = 2 possible terms are xx and (xx). For n = 3, the a(3) = 6 possible terms are xxx, (xx)x, x(xx), (xxx), ((xx)x), and (x(xx)). - Lee A. Newberg, Apr 06 2010

1 + x + 2*x^2 + 6*x^3 + 22*x^4 + 90*x^5 + 394*x^6 + 1806*x^7 + ...

MATHEMATICA

CoefficientList[Series[(3 - x - Sqrt[1 - 6 x + x^2]) / 2, {x, 0, 33}], x] (* Vincenzo Librandi, Nov 13 2014 *)

PROG

(Maxima)

a(n):=if n<1 then 1 else  sum(binomial(n+i-1, i)* binomial(2*n, n-2*i-1), i, 0, (n)/2)/(n); /* Vladimir Kruchinin, Nov 13 2014 */

(Sage)

a = lambda n: catalan_number(n)*hypergeometric([1/2-n/2, 1-n/2, n], [n/2+1, n/2+3/2], 1)

print [simplify(a(n)) for n in (0..23)] # Peter Luschny, Nov 14 2014

CROSSREFS

Cf. A006318, A085403, A086456, A103137, A132372.

Sequence in context: A049134 A086456 A006318 * A103137 A165546 A053617

Adjacent sequences:  A155066 A155067 A155068 * A155070 A155071 A155072

KEYWORD

nonn,changed

AUTHOR

Philippe Deléham, Nov 02 2009

STATUS

approved

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Transforms | Superseeker | Recent | More pages
The OEIS Community | Maintained by The OEIS Foundation Inc.

Content is available under The OEIS End-User License Agreement .

Last modified November 23 18:50 EST 2014. Contains 249865 sequences.