

A080109


Square of primes of the form 4k+1 (A002144).


10



25, 169, 289, 841, 1369, 1681, 2809, 3721, 5329, 7921, 9409, 10201, 11881, 12769, 18769, 22201, 24649, 29929, 32761, 37249, 38809, 52441, 54289, 58081, 66049, 72361, 76729, 78961, 85849, 97969, 100489, 113569, 121801, 124609, 139129
(list;
graph;
refs;
listen;
history;
text;
internal format)



OFFSET

1,1


COMMENTS

a(n) is the sum of two positive squares in only one way. See the Dickson reference, (B) p. 227.
a(n) is the hypotenuse of two and only two right triangles with integral legs (modulo leg exchange). See the Dickson reference, (A) p. 227.
In 1640 Fermat generalized the 3,4,5 triangle with the theorem: A prime of the form 4n+1 is the hypotenuse of one and only one right triangle with integral arms. The square of a prime of the form 4n+1 is the hypotenuse of two and only two... The cube of three and only three...


REFERENCES

L. E. Dickson, History of the Theory of Numbers, Volume II, Diophantine Analysis. Carnegie Institution Publ. No. 256, Vol II, Washington, DC, 1920, p. 227.
Morris Kline, Mathematical Thought from Ancient to Modern Times, 1972. pp. 275276.


LINKS

Table of n, a(n) for n=1..35.


FORMULA

a(n) = A002144(n)^2 = A070079(n)^2 + (4*A070151(n))^2, for n >= 1.  Wolfdieter Lang, Jan 13 2015


EXAMPLE

a(7) = 2809 is the hypotenuse of triangles 1241, 2520, 2809 and 1484, 2385, 2809, and only of these.
a(7) = 53^2 = 2809 = 45^2 + (4*7)^2, and this is the only way.  Wolfdieter Lang, Jan 13 2015


MATHEMATICA

Select[4 Range[96] + 1, PrimeQ]^2 (* Michael De Vlieger, Dec 27 2016 *)


PROG

(PARI) fermat(n) = { for(x=1, n, y=4*x+1; if(isprime(y), print1(y^2" ")) ) }


CROSSREFS

Cf. A002144, A080175.  Wolfdieter Lang, Jan 13 2015
Sequence in context: A324899 A338892 A198436 * A017126 A007204 A120096
Adjacent sequences: A080106 A080107 A080108 * A080110 A080111 A080112


KEYWORD

nonn,easy


AUTHOR

Cino Hilliard, Mar 16 2003


EXTENSIONS

Edited: Name changed, part of old name as comment. Comments added and changed. Dickson reference added.  Wolfdieter Lang, Jan 13 2015


STATUS

approved



