login
A010968
a(n) = binomial(n,15).
7
1, 16, 136, 816, 3876, 15504, 54264, 170544, 490314, 1307504, 3268760, 7726160, 17383860, 37442160, 77558760, 155117520, 300540195, 565722720, 1037158320, 1855967520, 3247943160, 5567902560, 9364199760, 15471286560, 25140840660, 40225345056, 63432274896
OFFSET
15,2
COMMENTS
There are no primes in this sequence. - Artur Jasinski, Dec 02 2007
LINKS
Milan Janjic, Two Enumerative Functions University of Banja Luka (Bosnia and Herzegovina, 2017).
Ângela Mestre and José Agapito, Square Matrices Generated by Sequences of Riordan Arrays, J. Int. Seq., Vol. 22 (2019), Article 19.8.4.
Index entries for linear recurrences with constant coefficients, signature (16, -120, 560, -1820, 4368, -8008, 11440, -12870, 11440, -8008, 4368, -1820, 560, -120, 16, -1).
FORMULA
a(n) = -A110555(n+1,15). - Reinhard Zumkeller, Jul 27 2005
a(n+14) = n(n+1)(n+2)(n+3)(n+4)(n+5)(n+6)(n+7)(n+8)(n+9)(n+10)(n+11)(n+12)(n+13)(n+14)/15!. - Artur Jasinski, Dec 02 2007; R. J. Mathar, Jul 07 2009
G.f.: x^15/(1-x)^16. - Zerinvary Lajos, Aug 06 2008; R. J. Mathar, Jul 07 2009
a(n) = n/(n-15) * a(n-1), n > 15. - Vincenzo Librandi, Mar 26 2011
From Amiram Eldar, Dec 10 2020: (Start)
Sum_{n>=15} 1/a(n) = 15/14.
Sum_{n>=15} (-1)^(n+1)/a(n) = A001787(15)*log(2) - A242091(15)/14! = 245760*log(2) - 1023103525/6006 = 0.9438350048... (End)
MAPLE
seq(binomial(n, 15), n=15..37); # Zerinvary Lajos, Aug 06 2008
MATHEMATICA
Table[Binomial[n, 15], {n, 15, 50}] (* Vladimir Joseph Stephan Orlovsky, Apr 22 2011 *)
PROG
(Magma) [ Binomial(n, 15): n in [15..70]]; // Vincenzo Librandi, Mar 26 2011
(PARI) for(n=15, 50, print1(binomial(n, 15), ", ")) \\ G. C. Greubel, Aug 31 2017
CROSSREFS
KEYWORD
nonn
EXTENSIONS
Some formulas adjusted to the offset by R. J. Mathar, Jul 07 2009
STATUS
approved