login
A118219
Smallest number k>1 such that Sum_{i=1..k} Prime[i]^n divides Product_{i=1..k} Prime[i]^n.
0
3, 30, 17, 248, 515, 49682
OFFSET
1,1
COMMENTS
a(7)>991430. - Robert G. Wilson v, Mar 02 2007
EXAMPLE
a(1) = 3 because 2 + 3 + 5 = 10 divides 2*3*5 = 30 but 2 + 3 = 5 does not divide 2*3 = 6.
MATHEMATICA
f[n_] := Block[{k = 2, p = 2, s = 2^n}, While[p = p*Prime@ k; s = s + Prime@ k^n; PowerMod[p, n, s] != 0, k++ ]; k]; Do[ Print@ f@n, {n, 10}] (* Robert G. Wilson v *)
CROSSREFS
Cf. A051838 = Sum of first n primes divides product of first n primes. Cf. A125314 = Smallest number k>1 such that Sum_{i=1..k} i^n divides Product_{i=1..k} i^n. Cf. A007504, A002110, A024450, A098999, A122102, A122103.
Sequence in context: A108739 A072973 A154054 * A186681 A295430 A344430
KEYWORD
hard,more,nonn
AUTHOR
Alexander Adamchuk, Feb 24 2007
EXTENSIONS
a(6) from Robert G. Wilson v, Mar 02 2007
STATUS
approved